Midterm Practice Exam

CS 4390／5390
October 13， 2019

1．Given the table below which was created using the Smith－Waterman algorithm for local alignment，（a）identify the local alignment score，and（b）perform trace－back to find the optimal alignment．

		T	T	A	C	T	G	T	G	T
	0	0	0	0	0	0	0	0	0	0
C	0	0	0	0	$\nwarrow 5$	$\leftarrow 4.5$	$\leftarrow 4$	$\leftarrow 3.5$	$\leftarrow 3$	$\leftarrow 2.5$
A	0	0	0	5	$\leftarrow \uparrow 4.5$	$\nwarrow \leftarrow \uparrow 4$	$\nwarrow \leftarrow \uparrow 3.5$	$\nwarrow \leftarrow \uparrow 3$	$\nwarrow \leftarrow \uparrow 2.5$	$\leftarrow \uparrow 2$
C	0	0	0	$\uparrow 4.5$	$\bigcirc 0$	$\leftarrow 9.5$	$\leftarrow 9$	$\leftarrow 8.5$	$\leftarrow 8$	$\leftarrow 7.5$
C	0	0	0	$\uparrow 4$	ऽヶ9 5	$\nwarrow \leftarrow \uparrow 9$	$\nwarrow \leftarrow \uparrow 8.5$	$\leftarrow \leftarrow \uparrow 8$	$\nwarrow \leftarrow \uparrow 7.5$	$\nwarrow \leftarrow \uparrow 7$
C	0	0	0	$\uparrow 3.5$	「个：	$\leftarrow \uparrow ¢ .5$	$\nwarrow \leftarrow \uparrow 8$	$\leftarrow \uparrow 7.5$	ऽヶ¢7	$\nwarrow \leftarrow \uparrow 6.5$
C	0	0	0	$\uparrow 3$	$\uparrow \uparrow 8$.	$\leftarrow \uparrow ¢$	$\nwarrow \leftarrow \uparrow 7.5$	$\leftarrow \leftarrow \uparrow 7$	$\nwarrow \leftarrow \uparrow 6.5$	$\leftarrow \leftarrow \uparrow 6$
T	0	「5	「5	$\leftarrow 4.5$	$\uparrow 7.5$	$\stackrel{+}{\times 105}$	$\leftarrow 13$	$\nwarrow \leftarrow 12.5$	$\leftarrow 12$	$\nwarrow \leftarrow 11.5$
G	0	$\uparrow 4.5$	$\uparrow 4.5$	$\nwarrow \leftarrow \uparrow 4$	$\uparrow 7$	$\uparrow 13$	＜185	$\leftarrow 18$	$\nwarrow \leftarrow 17.5$	$\leftarrow 17$
T	0	「5	\9．5	$\leftarrow 9$	$\leftarrow 8.5$	$\uparrow 12.5$	$\uparrow 18$	235		$\nwarrow \leftarrow 22.5$
G	0	$\uparrow 4.5$	$\uparrow 9$	$\nwarrow \leftarrow \uparrow 8.5$	$\nwarrow \leftarrow \uparrow 8$	$\uparrow 12$	$\uparrow \uparrow 17.5$	$\uparrow 23$	28.5	$\leftarrow 28$

Optimal Local Alignment Score：

Optimal Local Alignment（note not all of the spaced will be used）

2．Given the Needleman－Wunsch table below，find the optimal global alignment for the two sequences．

		T	T	A	C	T	G	T	G	T
	0	0.5	¢－1	$\leftarrow-1.5$	$\leftarrow-2$	$\leftarrow-2.5$	$\leftarrow-3$	$\leftarrow-3.5$	$\leftarrow-4$	$\leftarrow-4.5$
C	$\uparrow-0.5$	$\nwarrow \leftarrow \uparrow-1$	$\nwarrow \leftarrow \uparrow-1.5$	$\nwarrow \leftarrow \uparrow-2$	\} 3 . 5	$\leftarrow 3$	$\leftarrow 2.5$	$\leftarrow 2$	$\leftarrow 1.5$	$\leftarrow 1$
A	$\uparrow-1$	$\nwarrow \leftarrow \uparrow-1.5$	「ヶ个－2	T9．5	$\leftarrow \uparrow 3$	$\nwarrow \leftarrow \uparrow 2.5$	$\nwarrow \leftarrow \uparrow 2$	$\nwarrow \leftarrow \uparrow 1.5$	$\nwarrow \leftarrow \uparrow 1$	$\nwarrow \leftarrow \uparrow 0.5$
C	$\uparrow-1.5$	$\nwarrow \leftarrow \uparrow-2$	$\nwarrow \leftarrow \uparrow-2.5$	$\uparrow 3$	70.5	$\leftarrow 8$	$\leftarrow 7.5$	$\leftarrow 7$	$\leftarrow 6.5$	$\leftarrow 6$
C	\uparrow－2	Kヶ个－2．5	$\leftarrow \leftarrow \uparrow-3$	$\uparrow 2.5$	\ヶ¢	$\nwarrow \leftarrow \uparrow 7.5$	$\nwarrow \leftarrow \uparrow 7$	$\nwarrow \leftarrow \uparrow 6.5$	$\nwarrow \leftarrow \uparrow 6$	$\nwarrow \leftarrow \uparrow 5.5$
C	$\uparrow-2.5$	「ヶ个－3	$\leftarrow \uparrow-3.5$	$\uparrow 2$	「ヤ7．	「ヶヶ7	$\nwarrow \leftarrow \uparrow 6.5$	「ヶヶ6	$\nwarrow \leftarrow \uparrow 5.5$	$\nwarrow \leftarrow \uparrow 5$
C	\uparrow－3	$\nwarrow \leftarrow \uparrow-3.5$	\ヶ个－4	$\uparrow 1.5$	「ヤ7	Kヶヶ6．5	$\nwarrow \leftarrow \uparrow 6$	$\nwarrow \leftarrow \uparrow 5.5$	$\nwarrow \leftarrow \uparrow 5$	Kヶヶ4．5
T	$\uparrow-3.5$	「2	「ヶ1．5	$\leftarrow \uparrow 1$	$\uparrow 6.5$	¢ 12	$\leftarrow 11.5$	$\leftarrow \leftarrow 11$	$\leftarrow 10.5$	$\leftarrow 10$
G	$\uparrow-4$	$\uparrow 1.5$	$\nwarrow \leftarrow \uparrow 1$	$\nwarrow \leftarrow \uparrow 0.5$	$\uparrow 6$	$\uparrow 11.5$	¢ 117	$\leftarrow 16.5$	$\nwarrow \leftarrow 16$	$\leftarrow 15.5$
T	$\uparrow-4.5$	\ヶ1	\} 6 . 5	$\leftarrow 6$	$\leftarrow \uparrow 5.5$	\} \uparrow 1 1	$\uparrow 16.5$	K 22	$\leftarrow 21.5$	$\nwarrow \leftarrow 21$
G	$\uparrow-5$	$\uparrow 0.5$	$\uparrow 6$	$\nwarrow \leftarrow \uparrow 5.5$	$\nwarrow \leftarrow \uparrow 5$	$\uparrow 10.5$	$\nwarrow \uparrow 16$	$\uparrow 21.5$	＋ 27	＋26．5

Optimal Global Alignment（note not all of the spaced will be used）

						-	-	C	A	C	C	C	C	T	G	T	G

3. (a) Compute the Z-Values for ACTAACTAAC. (b) how are the values of $Z_{2}, Z_{3}, \ldots Z_{i-1}$ used in computing Z_{i}. (c) what does the value of Z_{i} mean?
(a)

> ACTAACTAAC
> Zi-0 0160 012120
(b) When computing say $Z 6$, we know $Z 5+5>6$, so we can look to see if $Z 2$ is less than $Z 5+1$, if so we know that the prefix match is contained in the current Z-box (starting at 5) and that the value can simply be copied.
(c) The Z value is the longest prefix of $\mathrm{S}[1 \ldots \mathrm{n}]$ and $\mathrm{S}[\mathrm{i} \ldots \mathrm{n}]$ that match.
4. From the suffix tree below: (a) determine if the string ACTG is in the input set of sequences, and explain your reasoning; and (b) find the longest common substring between the set of sequences, and explain your reasoning.

(a) Yes, ACTG is contained in the set because the path from the root following that sequence (highlighted) exists in the suffix tree.
(b) "TG" is the longest common substring, of the internal nodes in the tree with leaves in their subtrees labeled by all 3 sequences (circled), the node representing the string "TG" is the deepest.
7. What is the sum-of-pairs score of the following multiple sequence alignment using the global scoring with affine scoring model with the following parameters:

match	10
mismatch	-3
indel	-1
gap	-3

ACCTGCC
-C-TGCA
AGCGGCA
ACCT--A

$$
\begin{aligned}
& \text { Mt } 3333333=21 \\
& \text { Ms } 0303003=9 \\
& \text { Id } 3030330=12 \\
& \text { Gp }=9
\end{aligned}
$$

$$
\begin{aligned}
& (10 \times 21)-(3 \times 9)-(1 \times 12)-(3 \times 9) \\
& 210-27-12-27 \\
& 210-66 \\
& 144
\end{aligned}
$$

8. Given the pairwise alignments between the 4 sequences, and using sequence B as the starcenter, create the multiple alignment using the center-star method.

A: GATG-TGCCG	$B:$ CCTGCT-GCAG	B: CCTGCT-GCAG
$B:$ CCTGCTGCAG	$C:$ CC-GCTAGCAG	$D:$ CCTG-TAG--G

B: CCTGCT-GCAG
A: GATG-T-GCCG
C: CC-GCTAGCAG
D: CCTG-TAG--G
9. How would we modify the Smith-Waterman algorithm if we wanted to find a disjoint set of substrings of S to align to a substring of T.
For example when aligning $S=$ GGAGCGGCTTGG with $T=$ AAAACCTTTT, an optimal alignment would align $S[3 . .5] \cdot S[8 . .10]$ to $T[3 \ldots 8]$:

AGCCTT
AACCTT.

The concept can be though of as "skipping" $S[6 . .7]$ when computing the optimal local alignment. Note that the - operator is for concatenation.

Update the recursion formula to the following:

```
V(i,j)=max {
    0, // this is local alignment, empty align okay
    V(i-1,j-1) + delta(S[i],S[j]) // match mismatch as normal
    V(i, j-1) + delta(-, T[j]) // all insertions are still counted
    V(i-k, j), k<i // look for all substrings that ended at j in T
}
```

during the traceback follow any jumps to reconstruct the alignment
3. (2 point) Given the following partially completed computation of the Z-value algorithm, compute the rest of the values using the $O(n)$ time algorithm we discussed in class. Describe how you arrived at each value.

4. (3 points) From the suffix tree below: (a) determine if the string ACTG is in the input set of sequences, and explain your reasoning; (b) find the longest substring that occurs in all of the sequences twice, and explain your reasoning; (c) list the missing suffix links.

(a) Yes, a pith from the root labeled "A", "CTG" exists (b) "TG", deepest of " G ", " $T G$ ", " T ", " A "

ACTG \rightarrow CTG
$T G \rightarrow G$
$T G A \rightarrow G A$
ACTG \rightarrow CTGA
${ }^{A}(T G G \rightarrow T G$
CTGA \rightarrow TGA
$G A \rightarrow A$
$G C \rightarrow C$
$G T \rightarrow T$
10. (2 points) How would we modify the Needleman-Wunsch algorithm if we wanted to allow for any character in S to be repeated aligned as many times as we want in place.
For example when aligning $S=$ AGA with $T=$ GGGGGA, an optimal alignment would repeat the G in $S 5$ times to give the alignment:

AGGGGGA
-GGGGGA
In reality, the middle G is is being aligned with all of the Gs in T.
modify the recorrance by adding an exfaterm

$$
\begin{aligned}
& V(i, j)=\max \left\{\begin{array}{l}
V(i j, j-1)+\delta(S[j, T[j]) \\
V(i-1, j)+\delta(S[i], 1-1) \\
V(i, j-1)+\delta(S, T[j]) \\
V(i, j-1)+\delta(S[i], T[j])
\end{array}\right. \\
& \text { allows for the } \rightarrow \begin{array}{l}
\text { best mitan/mismita } \\
\text { from last cher of } S .
\end{array}
\end{aligned}
$$

On backtrack, follow links that may move non-diagnally but still output a column w/ two characters.

