Homework 4

CS 4364/5364
Spring 2021
Due: 12 April 2021

1. Assume that we compare the sequences below by counting the number of shared 3 mers (that is how many of the unique 3 -mers in one sequence are also in the other). For the following sequences, which pair is more similar.

- $S_{1}=$ ACGTCGATC
- $S_{2}=$ CCGGCGTCA
- $S_{3}=$ ACGCTCGAT

Does this change if we look at 2-mers?
Hint: It will help to create a list of all of the possible k-mers and their existence in each of the strings then use that list to calculate the count for each pair of sequences.
2. Given a set of sequences $S_{1}, S_{2}, S_{3}, \ldots, S_{k}$, we would like to find k substrings $T_{1}, T_{2}, T_{3}, \ldots, T_{k}$ of $S_{1}, S_{2}, S_{3}, \ldots, S_{k}$ respectively, such that the optimal SP score of the multiple sequence alignment of $T_{1}, T_{2}, T_{3}, \ldots, T_{k}$ is maximized.
(a) Design a dynamic programming algorithm to solve the problem with match, mismatch, and indel penalties of α, β, γ respectively (i.e. not affine gap scoring).
(b) What is the time complexity? Explain your answer.

Note that when $k=2$, this problem is the same as pairwise local alignment.

