Linear Programming

Definitions

Variables -- the goal is to find values for these
Objective Function -- a linear equation over the variables which will be maximized or minimized

Constraints -- linear inequalities that define what values of the variables are valid

Example

maximize $x+y$
subject to:
$y-3 x>-4$
$3 y-x<6$

Example

maximize $x+y$
subject to:
$y-3 x>-4$
$3 y-x<6$
$x=9 / 4=2.25$
$y=11 / 4=2.75$

Example

maximize $x+y$
subject to:
$y-3 x>-4$
$3 y-x<6$
$x=9 / 4=2.25$
$y=11 / 4=2.75$

Integers

Same idea, but the variables have to be integer values.

$$
\begin{aligned}
& \text { maximize } x+y \\
& \text { subject to: } \\
& \qquad \begin{array}{l}
y-3 x>-4 \\
3 y-x<6 \\
x, y \in \mathbb{Z}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=9 / 4=2.25 \\
& y=11 / 4=2.75
\end{aligned}
$$

Integers

Same idea, but the variables have to be integer values.

$$
\begin{aligned}
& \text { maximize } x+y \\
& \text { subject to: } \\
& y-3 x>-4 \\
& 3 y-x<6 \\
& x, y \in \mathbb{Z} \\
& \\
& x=9 / 4=2.25 \\
& y=11 / 4=2.75
\end{aligned}
$$

Integers

Same idea, but the variables have to be integer values.
maximize $x+y$
subject to:

$$
\begin{aligned}
& y-3 x>-4 \\
& 3 y-x<6 \\
& x, y \in \mathbb{Z}
\end{aligned}
$$

$$
\begin{aligned}
& x=9 / 4=2 \\
& y=11 / 4=
\end{aligned}
$$

Solving (Integer) Linear Programs

TL;DR there are programs available to do this efficiently the details aren't important.

Solving an LP is actually polynomial time solvable
-lLPs is NP-Hard
Major solvers will solve both problems
-CPLEX (by IBM, closed source)

- GUROBI (closed source)
-COIN-OR (open source)

Where is LP used?

- Transcript Assembly
- Parameter Advising (don't know why I think this is important)
- Phylogeny
- Computational Auctions
- Business Workflow Optimization
-....

