
Parametric sequence
alignment

Based on Chapter 13 from Algorithms on Strings, Trees, and Sequences by Dan Gusfield

(pairwise) sequence alignment
Given

•a pair of sequences S={s1,s2} with lengths m and n, and
•an alignment objective function

find an 2 x L matrix
•where max(m,n) < L < m+n,
•each row represents one sequence from the set with inserted gaps, and
•is optimal under the objective function.

2

Aligned Sequences
AGTPNGNP
AG-P-GNP

Aligner
Input Sequences

AGTPNGNP
AGPGNP

(pairwise) sequence alignment
Given

•a pair of sequences S={s1,s2} with lengths m and n, and
•an alignment objective function

find an 2 x L matrix
•where max(m,n) < L < m+n,
•each row represents one sequence from the set with inserted gaps, and
•is optimal under the objective function.

2

Aligned Sequences
AGTPNGNP
AG-P-GNP

Aligner
Input Sequences

AGTPNGNP
AGPGNP

O(mn)
running time

Alignment objective function

3

Alignment objective function
During dynamic programming, we talk about the objective functions on the fine scale:
•that is we look at how to define the score of a single operation (alignment column)

3

Alignment objective function
During dynamic programming, we talk about the objective functions on the fine scale:
•that is we look at how to define the score of a single operation (alignment column)

When we look at it as a whole, we are defining the whole alignment score :f (𝔸)
•with Needleman-Wunch it was

(the # function counts the number of columns in A that match a and b,

f ⃗σ (𝔸) = ∑
a,b∈Σ∪{′ −′ }

σ(a, b) × #(𝔸, a, b)

3

Alignment objective function
During dynamic programming, we talk about the objective functions on the fine scale:
•that is we look at how to define the score of a single operation (alignment column)

When we look at it as a whole, we are defining the whole alignment score :f (𝔸)
•with Needleman-Wunch it was

(the # function counts the number of columns in A that match a and b,

f ⃗σ (𝔸) = ∑
a,b∈Σ∪{′ −′ }

σ(a, b) × #(𝔸, a, b)

•this is many times "simplified" (here simplified means fewer parameters) to

 fα,β,γ (𝔸) = α∑
a∈Σ

#(𝔸, a, a) + β ∑
a≠b∈Σ

#(𝔸, a, b) + γ (∑
a∈Σ

#(𝔸, a,′ −′) + ∑
b∈Σ

#(𝔸,′ −′ ,b))

3

Alignment objective function
During dynamic programming, we talk about the objective functions on the fine scale:
•that is we look at how to define the score of a single operation (alignment column)

When we look at it as a whole, we are defining the whole alignment score :f (𝔸)
•with Needleman-Wunch it was

(the # function counts the number of columns in A that match a and b,

f ⃗σ (𝔸) = ∑
a,b∈Σ∪{′ −′ }

σ(a, b) × #(𝔸, a, b)

•this is many times "simplified" (here simplified means fewer parameters) to

 fα,β,γ (𝔸) = α∑
a∈Σ

#(𝔸, a, a) + β ∑
a≠b∈Σ

#(𝔸, a, b) + γ (∑
a∈Σ

#(𝔸, a,′ −′) + ∑
b∈Σ

#(𝔸,′ −′ ,b))
•we typically actually simplify this to
 fα,β,γ (𝔸) = α ⋅ mt𝔸 + β ⋅ ms𝔸 + γ ⋅ id𝔸

3

Alignment objective function
During dynamic programming, we talk about the objective functions on the fine scale:
•that is we look at how to define the score of a single operation (alignment column)

When we look at it as a whole, we are defining the whole alignment score :f (𝔸)
•with Needleman-Wunch it was

(the # function counts the number of columns in A that match a and b,

f ⃗σ (𝔸) = ∑
a,b∈Σ∪{′ −′ }

σ(a, b) × #(𝔸, a, b)

•this is many times "simplified" (here simplified means fewer parameters) to

 fα,β,γ (𝔸) = α∑
a∈Σ

#(𝔸, a, a) + β ∑
a≠b∈Σ

#(𝔸, a, b) + γ (∑
a∈Σ

#(𝔸, a,′ −′) + ∑
b∈Σ

#(𝔸,′ −′ ,b))
•we typically actually simplify this to
 fα,β,γ (𝔸) = α ⋅ mt𝔸 + β ⋅ ms𝔸 + γ ⋅ id𝔸

•what about when we add affine gaps?
3

Alignment objective function

•mt𝔸 -- number of columns where both characters match

•ms𝔸 -- number of columns where there characters are different (mismatches)

•id𝔸 -- number of gap characters (indels)

•gp𝔸 -- number of gaps

4

fα,β,γ,δ(𝔸) = α·mt𝔸 − β·ms𝔸 − γ·id𝔸 − δ·gp𝔸

An example

5

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

An example

6

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

An example

7

Question: what values of α,β,ɣ, and δ should
we choose to get the “best” alignment?

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

An example

7

Question: what values of α,β,ɣ, and δ should
we choose to get the “best” alignment?

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

What do we even
mean by "best"?

A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

8

A A - C C C G

A A G G C C -

A A C - C C G

A A G G C C -

A A C C C G

A A G G C C

(a) (b) (c)Ground Truth Computed Alignments

A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

8

A A - C C C G

A A G G C C -

A A C - C C G

A A G G C C -

A A C C C G

A A G G C C

(a) (b) (c)Ground Truth Computed Alignments

50%

A Digression on Accuracy

How would we know how accurate an alignment was if we knew the right answer?

The sum-of-pairs accuracy measures the fraction of substitutions from the ground
truth alignment that are recovered in a computed alignment

8

A A - C C C G

A A G G C C -

A A C - C C G

A A G G C C -

A A C C C G

A A G G C C

(a) (b) (c)Ground Truth Computed Alignments

50% 33%

An example

9

Question: what values of α,β,ɣ, and δ should
we choose to get the “best” alignment?

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

An example

9

Question: what values of α,β,ɣ, and δ should
we choose to get the “best” alignment?

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

An example

9

Question: what values of α,β,ɣ, and δ should
we choose to get the “best” alignment?

s1 = AACCCG
s1 = AAGGCC

AA--CCCG
AAGGCC--𝔸1

AA-CCCG
AAGGCC-𝔸2

AACCCG
AAGGCC𝔸3

AAC-CCG
AAGGCC-𝔸4

𝔸1 𝔸2 𝔸3 𝔸4

mt 4 4 3 4

ms 0 1 3 1

id 4 2 0 2

gp 2 2 0 2

Pairs of alignments in parameter space
Each alignment can be represented as
a plane in the (ɣ, δ, f)-space.

If the planes of alignments 𝔸 & 𝔸’ intersect, and are
distinct, then there is a line L in (ɣ, δ, f)-space along
which 𝔸 & 𝔸’ have the same objective value. If the
planes don’t intersect then one alignment had a
larger objective value at all assignments of ɣ & δ.

10

f

ɣ

β

Pairs of alignments in parameter space
Each alignment can be represented as
a plane in the (ɣ, δ, f)-space.

If the planes of alignments 𝔸 & 𝔸’ intersect, and are
distinct, then there is a line L in (ɣ, δ, f)-space along
which 𝔸 & 𝔸’ have the same objective value. If the
planes don’t intersect then one alignment had a
larger objective value at all assignments of ɣ & δ.

10

f

ɣ

β

Pairs of alignments in parameter space
Each alignment can be represented as
a plane in the (ɣ, δ, f)-space.

If the planes of alignments 𝔸 & 𝔸’ intersect, and
are distinct, then there is a line L in (ɣ, δ)-space
along which 𝔸 & 𝔸’ have the same objective value;
𝔸 has a larger value on one half plane and 𝔸’ on
he other. If the planes don’t intersect then one
alignment had a larger objective value at all
assignments of ɣ & δ.

When projected to the (ɣ, δ)-plane, we
can designate regions for which
f(𝔸)>f(𝔸’) and vice versa

11

𝔸3

𝔸1

11

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

12

Alignments in parameter space

13

𝔸3

𝔸1

𝔸2 & 𝔸4

Alignments in parameter space

13

𝔸3

𝔸1

𝔸2 & 𝔸4

𝔸3

𝔸1

𝔸2

Alignments in parameter space
If 𝔸 is optimal at some point p, it is on the correct
side of the line that separates 𝔸 from all 𝔸'.

14

p

𝔸3

𝔸1

𝔸2

Alignments in parameter space
If 𝔸 is optimal at some point p, it is on the correct
side of the line that separates 𝔸 from all 𝔸'.

If 𝔸 is optimal for at least 1 point p in the  
(ɣ, δ)-space then it is optimal for:  
 (1) only point p,  
 (2) only a line segment that contains p, or  
 (3) a convex polygon that contains p

14

p

𝔸3

𝔸1

𝔸2

Alignments in parameter space
If 𝔸 is optimal at some point p, it is on the correct
side of the line that separates 𝔸 from all 𝔸'.

If 𝔸 is optimal for at least 1 point p in the  
(ɣ, δ)-space then it is optimal for:  
 (1) only point p,  
 (2) only a line segment that contains p, or  
 (3) a convex polygon that contains p

Given two string s1 and s2 the (ɣ, δ)-space
decomposes into convex polygons such that any
point in the interior of the polygon P is optimal for
all points in P

14

p

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

15

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

15

How many regions are there?
Can we find them?

Newton's ray search algorithm

16

𝔸2

p

Newton's ray search algorithm
Given a random point p, choose a ray h that extends
to the boundary.

16

𝔸2

ph

Newton's ray search algorithm
Given a random point p, choose a ray h that extends
to the boundary.

Let r1 be the point at that boundary.

16

𝔸2

p
r1

h

Newton's ray search algorithm
Given a random point p, choose a ray h that extends
to the boundary.

Let r1 be the point at that boundary.

Find alignment 𝔸' that is optimal at r1.

16

𝔸2

p
r1

h𝔸1

Newton's ray search algorithm
Given a random point p, choose a ray h that extends
to the boundary.

Let r1 be the point at that boundary.

Find alignment 𝔸' that is optimal at r1.

If 𝔸!=𝔸' let the point ri+1 be the parameter choice that
is on the line that divides 𝔸 and 𝔸', and is also on h.

16

𝔸2

p
r1

h𝔸1

𝓁*

Newton's ray search algorithm
Given a random point p, choose a ray h that extends
to the boundary.

Let r1 be the point at that boundary.

Find alignment 𝔸' that is optimal at r1.

If 𝔸!=𝔸' let the point ri+1 be the parameter choice that
is on the line that divides 𝔸 and 𝔸', and is also on h.

Repeat until 𝔸 and 𝔸' are co-optimal (i.e. stop when
𝔸 is optimal) at ri+1, and set r*= ri+1.

16

𝔸2

p
r1

h𝔸1
r*=r2

𝓁*

Newton's ray search algorithm
Given a random point p, choose a ray h that extends
to the boundary.

Let r1 be the point at that boundary.

Find alignment 𝔸' that is optimal at r1.

If 𝔸!=𝔸' let the point ri+1 be the parameter choice that
is on the line that divides 𝔸 and 𝔸', and is also on h.

Repeat until 𝔸 and 𝔸' are co-optimal (i.e. stop when
𝔸 is optimal) at ri+1, and set r*= ri+1.

The boundary for the polygon in which p resides is a
segment of that line.

16

𝔸2

p
r1

h𝔸1
r*=r2

𝓁*

Newton's ray search algorithm

•Newton's ray search algorithm finds r* exactly

17

Newton's ray search algorithm

•Newton's ray search algorithm finds r* exactly
•Unless 𝔸 is optimal at the initial setting of r, the last computed alignment 𝔸* is
cooptimal with 𝔸 at r* and it is also optimal on h for some non-zero distance
beyond r*.

17

Newton's ray search algorithm

•Newton's ray search algorithm finds r* exactly
•Unless 𝔸 is optimal at the initial setting of r, the last computed alignment 𝔸* is
cooptimal with 𝔸 at r* and it is also optimal on h for some non-zero distance
beyond r*.

•When Newton's ray search algorithm computes an alignment at a point r on h,
none of the alignments computed previously (in this execution of Newton's
algorithm) are optimal at r.

17

Newton's ray search algorithm

•Newton's ray search algorithm finds r* exactly
•Unless 𝔸 is optimal at the initial setting of r, the last computed alignment 𝔸* is
cooptimal with 𝔸 at r* and it is also optimal on h for some non-zero distance
beyond r*.

•When Newton's ray search algorithm computes an alignment at a point r on h,
none of the alignments computed previously (in this execution of Newton's
algorithm) are optimal at r.

note: it follows that any polygon P intersected by h, a single ray search computes
alignments at no more than 2 points of P.

17

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary
for the polygon p is in (if it is inside a polygon).

18

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary
for the polygon p is in (if it is inside a polygon).

18

How many regions are there?
Can we find them?

Finding an edge of the polygon

Given p, h, r*, and the line that separates 𝔸 from the
next optimal alignment on h. (assume p is inside a
polygon)

19

𝔸2

p
r*

h

𝓁*

Finding an edge of the polygon

Given p, h, r*, and the line that separates 𝔸 from the
next optimal alignment on h. (assume p is inside a
polygon)

Perform a ray search in both directions from r*,
along the line.

19

𝔸2

p
r*

h’-

h’+

h

𝓁*

Finding an edge of the polygon

Given p, h, r*, and the line that separates 𝔸 from the
next optimal alignment on h. (assume p is inside a
polygon)

Perform a ray search in both directions from r*,
along the line.

Let l and u be the boundaries where 𝔸 is still
optimal.

19

𝔸2

p
r*

h’-

h’+

u

𝓁

h

𝓁*

Finding an edge of the polygon

Given p, h, r*, and the line that separates 𝔸 from the
next optimal alignment on h. (assume p is inside a
polygon)

Perform a ray search in both directions from r*,
along the line.

Let l and u be the boundaries where 𝔸 is still
optimal.

The line segment (l,u) is a face of the polygon for 𝔸.

19

𝔸2

p
r*

u

𝓁

h

𝓁*

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary for the
polygon p is in (if it is inside a polygon).
Given a point, a ray, we can find a face of the polygon (if it is inside a polygon).

20

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary for the
polygon p is in (if it is inside a polygon).
Given a point, a ray, we can find a face of the polygon (if it is inside a polygon).

20

How many regions are there?
Can we find them?

Finding other faces

21

𝔸2

p

Given a point p, and a subset of the faces of the
polygon in which p resides. (assume p is inside a
polygon).

Finding other faces

21

𝔸2

p

Given a point p, and a subset of the faces of the
polygon in which p resides. (assume p is inside a
polygon).

Find a new h that does not intersect any existing
faces. h

Finding other faces

21

𝔸2

p

r*

Given a point p, and a subset of the faces of the
polygon in which p resides. (assume p is inside a
polygon).

Find a new h that does not intersect any existing
faces.

Apply the ray finding algorithm to find r*.

h
𝓁*

Finding other faces

21

𝔸2

p

r*

Given a point p, and a subset of the faces of the
polygon in which p resides. (assume p is inside a
polygon).

Find a new h that does not intersect any existing
faces.

Apply the ray finding algorithm to find r*.

Apply the ray finding twice to find the face of the
polygon that intersects r*.

h

Completing the polygon

22

𝔸2

p

Given a point p, and a subset of the faces of the
polygon in which p resides. (assume p is inside a
polygon).

Find a new h that does not intersect any existing
faces.

Apply the ray finding algorithm to find r*.

Apply the ray finding twice to find the face of the
polygon that intersects r*.

Repeat until no additional rays can be placed from p.

Completing the polygon

22

𝔸2

p

Given a point p, and a subset of the faces of the
polygon in which p resides. (assume p is inside a
polygon).

Find a new h that does not intersect any existing
faces.

Apply the ray finding algorithm to find r*.

Apply the ray finding twice to find the face of the
polygon that intersects r*.

Repeat until no additional rays can be placed from p.

The degenerate cases
r* is on the border of the parameter space
•one of the edges of the polygon is the edge of the space.
•use the border line as l* to find edge.

23

The degenerate cases
r* is on the border of the parameter space
•one of the edges of the polygon is the edge of the space.
•use the border line as l* to find edge.

r* is a vertex of the polygon
•one of the ray searches along l* will not find any point beyond r*.
•Stop and use another h that avoids the current r*.

23

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary for the
polygon p is in (if it is inside a polygon).
Given a point, a ray, we can find a face of the polygon (if it is inside a polygon).
Given a point, find the polygon that it resides in (if it is inside a polygon).

24

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary for the
polygon p is in (if it is inside a polygon).
Given a point, a ray, we can find a face of the polygon (if it is inside a polygon).
Given a point, find the polygon that it resides in (if it is inside a polygon).

24

How many regions are there?
Can we find them?

Finding a starting point
How do we ensure that a point is on the interior of a
polygon?

25

p

Finding a starting point
How do we ensure that a point is on the interior of a
polygon?

25

p

h

Finding a starting point
How do we ensure that a point is on the interior of a
polygon?

If r*=p --- 𝔸* is optimal for some non-zero distance along
h.

If r*!=p --- 𝔸 is optimal for some non-zero distance along
h.

25

p

h

r*

Finding a starting point
How do we ensure that a point is on the interior of a
polygon?

If r*=p --- 𝔸* is optimal for some non-zero distance along
h.

If r*!=p --- 𝔸 is optimal for some non-zero distance along
h.

Could be optimal only at a line.

25

p

h

r*

Finding a starting point
How do we ensure that a point is on the interior of a
polygon?

If r*=p --- 𝔸* is optimal for some non-zero distance along
h.

If r*!=p --- 𝔸 is optimal for some non-zero distance along
h.

Could be optimal only at a line.

Choose a point in the range where 𝔸/𝔸* is optimal,
perform a ray search in a perpendicular direction.

25

p

h

r*

r'

Finding a starting point
How do we ensure that a point is on the interior of a
polygon?

If r*=p --- 𝔸* is optimal for some non-zero distance along
h.

If r*!=p --- 𝔸 is optimal for some non-zero distance along
h.

Could be optimal only at a line.

Choose a point in the range where 𝔸/𝔸* is optimal,
perform a ray search in a perpendicular direction.

𝔸/𝔸* is either optimal for some distance along h', or some
alignment that is optimal for some distance is returned.

25

p

h

r*

h'
r'

Completing the decomposition

26

𝔸2

p'

𝔸1

Find a new point p' outside any existing polygon, but
internal to another polygon.

Completing the decomposition

26

𝔸2

p'

𝔸1

Find a new point p' outside any existing polygon, but
internal to another polygon.

Each time ray-search is run, for each alignment
seen, insert into a list of alignments if its not already
there.

Completing the decomposition

26

𝔸2

p'

𝔸1

Find a new point p' outside any existing polygon, but
internal to another polygon.

Each time ray-search is run, for each alignment
seen, insert into a list of alignments if its not already
there.

We know these alignments are internal to some
polygon.

Completing the decomposition

26

𝔸2

p'

𝔸1

Find a new point p' outside any existing polygon, but
internal to another polygon.

Each time ray-search is run, for each alignment
seen, insert into a list of alignments if its not already
there.

We know these alignments are internal to some
polygon.

Use an unmkarked point from this list, and mark it.

Completing the decomposition

26

𝔸2

p'

𝔸1

Find a new point p' outside any existing polygon, but
internal to another polygon.

Each time ray-search is run, for each alignment
seen, insert into a list of alignments if its not already
there.

We know these alignments are internal to some
polygon.

Use an unmkarked point from this list, and mark it.

Completing the decomposition

27

𝔸2

𝔸1

Find a new point p' outside any existing polygon, but
internal to another polygon.

Each time ray-search is run, for each alignment
seen, insert into a list of alignments if its not already
there.

We know these alignments are internal to some
polygon.

Use an unmkarked point from this list, and mark it.

Completing the decomposition

27

𝔸2

𝔸1

𝔸3

Find a new point p' outside any existing polygon, but
internal to another polygon.

Each time ray-search is run, for each alignment
seen, insert into a list of alignments if its not already
there.

We know these alignments are internal to some
polygon.

Use an unmkarked point from this list, and mark it.

When entire list is marked, the decomposition is
complete.

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary for the
polygon p is in (if it is inside a polygon).
Given a point, a ray, we can find a face of the polygon (if it is inside a polygon).
Given a point, find the polygon that it resides in (if it is inside a polygon).

In the process of ray search, we can list all representative alignments.

28

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary for the
polygon p is in (if it is inside a polygon).
Given a point, a ray, we can find a face of the polygon (if it is inside a polygon).
Given a point, find the polygon that it resides in (if it is inside a polygon).

In the process of ray search, we can list all representative alignments.

28

How many regions are there?
Can we find them?

Things we know so far
For a parameter setting, we can find the optimal alignment.

Two alignments will have a line in (ɣ, δ)-space where they are co-optimal*.

For any point, the optimal alignment is optimal for a point, a line, or a region.

There are a limited number of regions for a fixed input.

Given a point and a ray, we can find a point (and a line) that is at the boundary for the
polygon p is in (if it is inside a polygon).
Given a point, a ray, we can find a face of the polygon (if it is inside a polygon).
Given a point, find the polygon that it resides in (if it is inside a polygon).

In the process of ray search, we can list all representative alignments.

28

How many regions are there?
Can we find them?

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

29

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

Proof:
Without loss of generality, let α=α0 and β=β0.

29

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

Proof:
Without loss of generality, let α=α0 and β=β0.

For any alignment 𝔸, let C𝔸 = α0 mt𝔸 - β0 ms𝔸.

29

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

Proof:
Without loss of generality, let α=α0 and β=β0.

For any alignment 𝔸, let C𝔸 = α0 mt𝔸 - β0 ms𝔸.

Then each alignment is represented by the tuple (C𝔸, id𝔸, gp𝔸).

29

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

Proof:
Without loss of generality, let α=α0 and β=β0.

For any alignment 𝔸, let C𝔸 = α0 mt𝔸 - β0 ms𝔸.

Then each alignment is represented by the tuple (C𝔸, id𝔸, gp𝔸).

If some 𝔸' has id𝔸 indels, gp𝔸 gaps, and C𝔸 < C𝔸' then 𝔸' cannot be optimal for any (ɣ,
δ).

29

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

Proof:
Without loss of generality, let α=α0 and β=β0.

For any alignment 𝔸, let C𝔸 = α0 mt𝔸 - β0 ms𝔸.

Then each alignment is represented by the tuple (C𝔸, id𝔸, gp𝔸).

If some 𝔸' has id𝔸 indels, gp𝔸 gaps, and C𝔸 < C𝔸' then 𝔸' cannot be optimal for any (ɣ,
δ).
For all triples with the last two variables id𝔸, gp𝔸, at most 1 can be optimal at some point.

29

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

Proof:
Without loss of generality, let α=α0 and β=β0.

For any alignment 𝔸, let C𝔸 = α0 mt𝔸 - β0 ms𝔸.

Then each alignment is represented by the tuple (C𝔸, id𝔸, gp𝔸).

If some 𝔸' has id𝔸 indels, gp𝔸 gaps, and C𝔸 < C𝔸' then 𝔸' cannot be optimal for any (ɣ,
δ).
For all triples with the last two variables id𝔸, gp𝔸, at most 1 can be optimal at some point.
If n≤m are the lengths of the string, there can be at most m+n gaps, and m+n indels.

29

Bounding the number of regions
Theorem:
No matter which two of the four parameters are chosen to be variable, the polygon
decomposition can contain at most O(m2) polygons.

Proof:
Without loss of generality, let α=α0 and β=β0.

For any alignment 𝔸, let C𝔸 = α0 mt𝔸 - β0 ms𝔸.

Then each alignment is represented by the tuple (C𝔸, id𝔸, gp𝔸).

If some 𝔸' has id𝔸 indels, gp𝔸 gaps, and C𝔸 < C𝔸' then 𝔸' cannot be optimal for any (ɣ,
δ).
For all triples with the last two variables id𝔸, gp𝔸, at most 1 can be optimal at some point.
If n≤m are the lengths of the string, there can be at most m+n gaps, and m+n indels.
Any two alignments with the same triple are optimal at exactly the same points.

29

Decomposition Speed
How many regions can a single ray intersect with?

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

How much work needs to be done at each intersection?

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

How much work needs to be done at each intersection?
•optimal alignment at that point, compare the alignments, O(m2)

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

How much work needs to be done at each intersection?
•optimal alignment at that point, compare the alignments, O(m2)

How much work needs to be done to find the ends of a boundary?

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

How much work needs to be done at each intersection?
•optimal alignment at that point, compare the alignments, O(m2)

How much work needs to be done to find the ends of a boundary?
•two ray searches at the found r*, which is O(m4) work once you get there

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

How much work needs to be done at each intersection?
•optimal alignment at that point, compare the alignments, O(m2)

How much work needs to be done to find the ends of a boundary?
•two ray searches at the found r*, which is O(m4) work once you get there

Therefore a boundary can be found in O(m4)-time

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

How much work needs to be done at each intersection?
•optimal alignment at that point, compare the alignments, O(m2)

How much work needs to be done to find the ends of a boundary?
•two ray searches at the found r*, which is O(m4) work once you get there

Therefore a boundary can be found in O(m4)-time

Total decomposition can be found in that proportional to the number of edges in the
decomposition E, which is bounded by O(n2), so the total time is O(n6)

30

Decomposition Speed
How many regions can a single ray intersect with?
•as many regions as there are, O(m2)

How much work needs to be done at each intersection?
•optimal alignment at that point, compare the alignments, O(m2)

How much work needs to be done to find the ends of a boundary?
•two ray searches at the found r*, which is O(m4) work once you get there

Therefore a boundary can be found in O(m4)-time

Total decomposition can be found in that proportional to the number of edges in the
decomposition E, which is bounded by O(n2), so the total time is O(n6)

Can be O(m4)!
30

Decomposition Speed
Keep a list L of optimal alignments found along the way (the values of mt, ms, id, & gp)

Any time a new h is chosen, find the place where the line intersecting the optimal
alignment and every alignment in L intersect h

Start the ray search at the closest to p rather than the boundary.

The size of L is bounded by sum of the number of vertices (V), edges (E), and polygons
(R) in the decomposition.

O(E) ray searches to find all edges, therefore O(E(V+E+R)) = O(m4) extra work to use
L.

When doing a ray search, we only compute an alignment for points not in L, then they
are added to L, so the number of alignments is bounded by the same size as L,
therefore the alignment running time is O((V+E+R)m2) = O(m4)

31

Parametric sequence alignment

For a fixed input:
•there are O(m2) optimal alignments when two parameters are free
•the regions can be found by repeated ray-search

32

More free parameters

33

•mt𝔸 -- number of columns where both characters match

•ms𝔸 -- number of columns where there characters are different (mismatches)

•id𝔸 -- number of gap characters (indels)

•gp𝔸 -- number of gaps

Using the same argument as with 2 parameters, how many polygons are possible
when all 4 parameters are free?

fα,β,γ,δ(𝔸) = α·mt𝔸 − β·ms𝔸 − γ·id𝔸 − δ·gp𝔸

More free parameters

33

•mt𝔸 -- number of columns where both characters match

•ms𝔸 -- number of columns where there characters are different (mismatches)

•id𝔸 -- number of gap characters (indels)

•gp𝔸 -- number of gaps

Using the same argument as with 2 parameters, how many polygons are possible
when all 4 parameters are free?
•how many values of mt𝔸and ms𝔸can there be for a single input?

fα,β,γ,δ(𝔸) = α·mt𝔸 − β·ms𝔸 − γ·id𝔸 − δ·gp𝔸

More free parameters

33

•mt𝔸 -- number of columns where both characters match

•ms𝔸 -- number of columns where there characters are different (mismatches)

•id𝔸 -- number of gap characters (indels)

•gp𝔸 -- number of gaps

Using the same argument as with 2 parameters, how many polygons are possible
when all 4 parameters are free?
•how many values of mt𝔸and ms𝔸can there be for a single input?
•O(m4)

fα,β,γ,δ(𝔸) = α·mt𝔸 − β·ms𝔸 − γ·id𝔸 − δ·gp𝔸

More free parameters

33

•mt𝔸 -- number of columns where both characters match

•ms𝔸 -- number of columns where there characters are different (mismatches)

•id𝔸 -- number of gap characters (indels)

•gp𝔸 -- number of gaps

Using the same argument as with 2 parameters, how many polygons are possible
when all 4 parameters are free?
•how many values of mt𝔸and ms𝔸can there be for a single input?
•O(m4)

fα,β,γ,δ(𝔸) = α·mt𝔸 − β·ms𝔸 − γ·id𝔸 − δ·gp𝔸

Later work shows that
this bound can be reduced

to O(md+1/d-1)

