
Example Homework Solutions

Dan DeBlasio

1 Given a string S and an integer k, find the length and position
of the first k (lexicographically) positions of this longest subse-
quence in S that occurs at least k times in O(nk) time, where
|S| = n.

Algorithm:

1. Construct the suffix array, a, and the longest common prefix array, lcp, for S.

2. Define two new variables max` and maxc which will hold the length and starting position in
a of the current longest sequence (initialize these variables to 0).

3. For increasing starting positions 1 ≤ i ≤ n − k in a, let `i = min{lcp[i], lcp[i + 1], ..., lcp[i +
k − 1]}. if max` < `i then set max` = `i and maxc = i.

The maximum sequence length will be in max`, and a[maxc], a[maxc + 1], ..., a[maxc + k] will be
the locations in S of the lexicographically minimum substrings that contain this string.

The longest common prefix for a pair of suffixes in a is the minimum of the lcp values of those
prefixes, since the suffixes are in lexicographic order that same prefix must be shared by the suffixes
in between them. Therefore, by finding the set of k−1 locations in lcp that has the largest minimum
value, we will have found the longest substring that repeated k or more times. Because the condition
in Step 3 requires max` to be strictly less than `i, if there are strings of length max` that occur
more than k times, or more than one string that occurs k times, maxc will be set to the minimum
position in a where this limit is first encountered. a is in lexicographic order, therefore the returned
location is the lexicographic minimum such set of prefixes.

Assume we have run our algorithm and we are at step 4. Let there exist some other substring of
length `′ > max` that appeared k times. The suffixes that begin with that string would be grouped
together in a, call the starting position of these suffixes i′. Because all k of these suffixes share an
i length prefix, the first pair satisfy the following: S[a[i′]...a[i′] + `′] = S[a[i′+ 1]...a[i′+ 1] + `′] and
lcp[i′] ≥ i. Similarly lcp[i′+1] ≥ i, ...lcp[i′+k−1] ≥ i. Therefore the min operation in step 3, when
i = i′ would result in the value `′ > max` and would have triggered the resetting of the values
max` and maxc. This contradicts the original assumption that the algorithm ran to completion,
and therefore a longer substring does not exist.

The running time of step 1 for a string of length n is O(n) as given by Manber and Myers. Steps
2 is an O(1)-time operation. Step 3 can be performed in O(kn)-time: at each position i in a we
compare k values meaning the time for each position is O(k), and we examine n − k + 1 starting
positions i which is O(n). Therefore the total running time is O(kn).

1

2 Given a binary graph connection matrix g such that gij = gji = 1
if nodes i and j are connected, and a weight wi for each node.
Formulate an ILP to find a subset of nodes (using a binary
indicator variable xi) that minimizes the total weight left out of
the set (i.e. the sum of the non-included nodes) but does not
allow any neighbors. Assume there are n nodes in the graph,

minimize
∑

1≤i≤n
wi(1− xi)

subject to xi + xj ≤ 1, 1 ≤ i, j ≤ n & gij = 1
xi ∈ {0, 1}, 1 ≤ i ≤ n

(1)

The first set of constraints ensures no neighboring nodes from the graph are included in the set. If
two nodes are connected (i.e. gij = 1) then there will be an inequality in the program stating that
the sum of the indicators must be at most 1. Since the xi and xj variables can only be 0 or 1 (due
to the final set of constraints) either only one or neither one can be included in the set. This means
the constraint set limit the assignments to those that both only select non-neighbors and can only
make binary inclusion choices.

If a node i is not included in the set the variable xi will be 0, therefore the value of (1 − xi) will
be 1. Therefore the sum defined in the objective function finds the sum of the weights for the
nodes not included in the set (as specified in the problem). Thus by minimizing this sum under
the conditions above, we are finding the set of is optimal for the problem description.

2

