
Homework 2

CS 4364/5364
Spring 2022

Due: 9 February 2022

Because of the reliance of the particular assignments in this class on mathematical notation,
and the fact that all assignments will be submitted electronically, students are encouraged
to use LATEX to formalize their responses. For those enrolled in the graduate section
the use of latex is required. This assignment (like all others) will be posted on the
course github1 as source code as well as in PDF form on the course website. Please submit
your assignment to the professor via email, either as a link to your assignment online (i.e.
overleaf or github) or as an attachment. Graduate students will need to include the .tex

files as well as a PDF, this is optional but encouraged for undergraduates.

1. (25 points) The first method we saw to find a pattern P in a text T was
using the maximum prefix overlap values on a special string (calculate
Mi for each i in the string P$T). We know that we can compute these
Mi values in O(m + n) time (assuming |P | = n and |T | = m). The solution
described in class assumes both strings are over the same alphabet: what
if they were not?

Consider the following: Given a protein sequence pattern P ∈ Σ∗AA over
the amino acid alphabet, and a RNA text T ∈ Σ∗RNA (see footnote 2).
Develop an algorithm that uses the maximum prefix overlap method to
determine where the pattern P is in the text T (if it exists), and runs in
O(m + n) time.

Translating from RNA codons (3 nucleotides) to amino acids is done us-
ing the standard codon table (can be found in the slides, though its not
actually needed for this exercise). The problem is that to reverse the
translation of an amino acid pi ∈ P there are multiple choice of codon that
could have produced it, thus there is an exponential number of possible
un-translations of P . Therefore, we cannot simply enumerate all possible

1github.com/deblasiolab/CS4364-documents
2ΣAA = {A, R, N, D, B, C, E, Q, Z, G, H, I, L, K, M, F, P, S, T, W, Y, V} and ΣRNA = {A, C, U, G}

1

RNA un-translations of the pattern and run the maximum prefix overlap,
it would be exponential time which is not feasible.

Hint: you can run the algorithm multiple times, but as long as this number
of repetitions is constant it is absorbed by the big-O.

Assume there is a function L : Σ∗RNA → Σ∗AA that will convert an RNA string to
amino acid, removing up to 2 characters at the end for incomplete codons.

• define T̂1 = L(T [1...n])

• construct a new string S1 = P$T̂1 (where $/∈ ΣAA)

• calculate the maximum prefix match values Mi(S1), ∀2 ≤ i ≤ (m + n/3 + 1)

• if any Mi(S1) == m, return true and exit

• define T̂2 = L(T [2...n])

• construct a new string S2 = P$T̂2 (where $/∈ ΣAA)

• calculate the maximum prefix match values Mi(S1), ∀2 ≤ i ≤ (m + n/3 + 1)

• if any Mi(S2) == m, return true and exit

• define T̂3 = L(T [3...n])

• construct a new string S3 = P$T̂3 (where $/∈ ΣAA)

• calculate the maximum prefix match values Mi(S3), ∀2 ≤ i ≤ (m + n/3 + 1)

• if any Mi(S3) == m, return true and otherwise return false

We know that for any i > 3, L(T [i...n]) will be a suffix of L(T [(i%3) + 1...n]).
Therefore if P is contained in T [i...n], it will be contained in T [(i%3) + 1...n]. This
is why only a constant number of searches need to be performed. Because there is
only one translation of RNA into amino acids, we know that we cannot miss P if we
don’t make the right translation. Therefore we can be assured that we are finding P
if it exists using the 3 searches described.

The running time of L is linear with respect to the string given, this all of the
conversions take O(m) time each. The construction of the Ss takes O(m + n + 1)
time each, as does the calculating of Mi (these are the dominating factors). The
searching across Mis takes O(m) time. Since we construct a constant number of Ss
and calculate Mis on them, the total running time is O(m + n).

2. (20 points) Given a directed graph G = (V,E), source and sink vertexes
s, t ∈ V , and a limit on the flow allowed through nodes me (defined ∀e ∈ E).
Write the max flow problem as a linear program, and explain each (set of)

2

equation in your definition. Remember the max flow problem assigns a
flow (weight), fe, to each edge in a graph while maximizing the total flow
going from the source to the sink. For each node (other than the source
and sink, i.e. v ∈ V \{s, t}) the total in flow must equal the out flow. Some
helpful notation to use:

• a directed edge e(ab) ∈ E goes from a to b

• the set of in edges to a vertex v can be written as E(∗v) =
{
e(a,b)|b = v, e(ab) ∈ E

}
• the set of out edges to a vertex v can be written as E(v∗) =

{
e(a,b)|a = v, e(ab) ∈ E

}
• we can say the sum of the out flow to a node v is

∑
e∈E(v∗)

fe

Your variables will be the set of fe’s, some of these (but not all) will end
up in the optimization function. The things to keep in mind that must
be satisfied are: (1) conservation of flow across nodes, (2) maximum flow
across an edge, and (3) the outflow at the source should equal the inflow
at the sink (though this may not need to be explicit in your program).

minimize
∑

e∈E(s∗)

fe (1)

subject to fe ≤ me, ∀e ∈ E (2)∑
ei∈E(v∗)

fei −
∑

eo∈E(∗v)

fe0 = 0, ∀v ∈ V \ {s, t} (3)

The objective, (1), sums the amount of flow out of the source. Since the source and
the sink are the only two nodes who’s flow is not conserved, maximizing the flow out
of this node maximizes the flow into the sink (they will also have matching values
because of this without the need for an extra constraint). The conservation of flow
across nodes is guaranteed by the equations (3), there is one for each non source/sink
node in the graph. The flow constraints are enforced by (2), because me is a given
constant it can be on the right side of the inequality.

3

