
Homework 3

CS 4364/5364
Spring 2022

Due: 23 February 2022

1. (25 points) Profile Alignment Problem Given two sequence profiles T and S, of
sizes σ × n and σ ×m respectively (that is each represents a sequence of length
n [m], but with probabilities of each character from the alphabet at each posi-
tion), determine the optimal alignment (i.e. which columns of S align with which
columns of T) under the scoring scheme δ.

Your task: modify the Needlman-Wunch global alignment algorithm to consider
these profiles rather than sequences. You can assume that the replacement costs
are defined in a function δ(a, b) → Z, ∀a, b ∈ Σ ∪ {′−′}. Give the algorithm, an
explanation of correctness, and analysis of it’s running time.

An example alignment is shown below over the alphabet Σ = {A, C, T, G}, as well as
it’s alignment score. Note that the score for a column is now no longer the value
of δ for the two characters being aligned, but the weighted sum of these values.

Figure 1: Alignment of two profiles

Figure 2: Scoring scheme

1

Solution
the algorithm

• Let there be a function M : Rσ×Rσ×Rσ×σ → R which takes as input two profiles (real-valued
vectors of length σ) and a delta function (a real-valued σ × σ matrix) then returns the cost
of aligning the two columns under the delta function. Define it as follows:

M(A,B, δ) :=
∑
a,b∈Σ

A[a] ∗B[b] ∗ δ(a, b).

• Let there be two other functions of a similar type; I : ×Rσ×Rσ×σ → R and D : ×Rσ×Rσ×σ →
R that provide the score of inserting or deleting a profile respectively. Define them as:

I(B, δ) :=
∑
b∈Σ

B[b] ∗ δ(′-′, b),

and
D(A, δ) :=

∑
a∈Σ

A[a] ∗ δ(a,′ -′).

• Alter the recurrence relation from Needlman-Wunsch to consider these new scores as follows,
assuming we can represent each sequence of profiles such that the first dimension is the
position in the sequence and the second is the frequency of a character:

V (i, j) = max


V (i− 1, j − 1) +M(S[i], T [j], δ) //align positions i and j from

//S and T respectively

V (i− 1, j) +D(S[i], δ) //delete position i from S

V (i, j − 1) + I(T [j], δ) //insert position j from T

• Initialize the V matrix as follows:

V (0, 0) = 0
V (i, 0) = V (i− 1, 0) +D(S[i]) 1 ≤ i ≤ n
V (0, i) = V (0, i− 1) + I(T [j]) 1 ≤ i ≤ m

• Fill in the remaining parts of V table and perform traceback as described in the original
algorithm outputting profiles instead of single characters in the alignment.

correctness
The initializations match the original initializations in that the best alignment between any string
and the empty string is to remove (insert/delete) all of the characters up to this point (this is
the only choice) The choice made in the recurrence relation is still to decide on what the last
column should be in the optimal alignment between the prefixes S[1...i] and T [1....j], thus as long
as the previous steps provide the optimal scores you can intuition though in a inductive manner
to show each step is then correct. Since we know the base cases (initializations) are true, it
follows that the best alignment score of the full sequences will be held in V (n,m) as in the original
algorithm. Because the paths are the same as in the original algorithm with respect to how to
output matches/mismatch, insertion, and deletion columns we know the traceback will output the
correct alignment in line with the example.

2

run-time analysis
the first two bullets are simply definitions, and thus have no running time. The initialization fills
in n + m + 1 cells of the table, and from the definition we can see that calculating both I and D
take O(σ) time. Therefore, the total running time of the initializations is O (σ (m+ n)). Filling
in the table still means calculating values for n × m values, but at each cell we must run M , I,
and D which take O(σ2), O(σ), and O(σ) time respectively. This means calculating the value at
each cell is O(σ2)-total time, and thus filling in V is O

(
σ2 (mn)

)
-time. The alignment can be at

most n + m columns long, and printing each profile can take O(σ)-time, therefore the traceback
and printing take O (σ (m+ n)). Thus the overall running time, dominated by filling in V , takes
O
(
σ2 (mn)

)
-time.

3

