
Algorithms Refresher
CS 4364 & 5364

Some string terminology
An alphabet Σ is a set of characters

•typically we say |Σ| = σ

A string S ∈ Σ* is a finite set of characters from our alphabet

•note the set notation above: Σ* -- set of all strings of any length

•Σ3 -- set of 3 character strings

We can also write a string as an array S[1...n] and address a single char.

We also sometimes write a string as an ordered list of characters
abstractly, S=s1s2....sn

A substring can be written as Si,j or S[i...j]

Examples

Σ = {'a','e','i','o','u'} 
σ = 5

S = "aaoiie" 
Σ* = {"","a","e","i","o","u","aa","ae",...} 
Σ3 = {"aaa","aae","aai",...}

S[3] = 'o'

s6 = 'e' 

S2,4 = S[2...4] = "aoi"

Complexity Analysis
Given two lists of n and m elements respectively, how many comparisons
are needed to compare all elements in one with each element of the other?

Given a list of n elements, how many comparisons are needed to compare
each pair of elements? each triple?

I have an algorithm that for each string in a pool of m items performs an
O(log n) search for elements in another list of items. It stops when it finds
match. Whats the worst case running time? Whats the best case running
time?

•What if I told you the search was Ω(1) in addition to being O(log n)?

Amortized Analysis

Sometimes we can't always calculate the expected running time just by
analyzing the worst case running time of a single iteration

Think of tree re-balancing:

•a normal insert into a balanced tree takes a small amount of time

• if the tree is highly un-balanced it takes longer

•rebalancing can be performed to decrease running time later and the
"cost" of this operation is averaged over many iterations (its distributed)

Graphs
•G = (V,E)

•V -- vertex set {a,b,c,d,e,f}, |V| = n

•E -- edge set {(a,b), (a,c), (a,d), (b,e), (c,f), (d,f), (c,b)}, |E| = m

a

b

c

d

e

f

Graphs
An Eulerian Path visits each edge exactly once

•an Eulerian Cycle starts and ends at the same vertex

a c

d

e

f

b

Graphs
An Hamiltonian Path visits each vertex exactly once

•an Hamiltonian Cycle starts and ends at the same vertex

a c

d

e

f

b

Graphs
Directed Acyclic Graphs

•most common graph type in computational biology problems

a

b

c

d

e

f

Graphs
Directed Acyclic Graphs

•nodes can be ordered such that a vertex occurs before any of its children

a b c de f

a

b

c

d

e

f

Graphs
Directed Acyclic Graphs

•when weighted shortest (min weight) path can be solved in O(m+n) time

a

b

c

d

e

f

3

2

1

2

3

2 2

Graphs
Directed Acyclic Graphs

•sometimes used to model flow networks

•one common algorithm used on these networks is min-cut/max-flow

a

b

c

d

e

f

3

2

1

2

3

2 2

1

2

2
The max a→f flow is 5  

using 3 paths

A min a→f cut is 5  
cutting these 2 edges

Dynamic Programming
Memoization is the simplest form of dynamic programming:

•assume you have some recursive method RecFun(a)

•memoization is basically the idea of adding the following to the top of the
method definition:

def RecFun(a){  
 if(defined(SavedResults[a])) return SavedResults[a];
 ...  
}

•think about Fibonacci, if we want the 5th fibbonacci number we need to
compute the 4th and 3rd, but to compute the 4th we also need the 3rd so if
we saved it we wouldn't have to compute it again.

Dynamic Programming
Flipping that on its head, really we need to compute all of the values we will ever
need in SavedResults[]

Sometimes we can do that in an order that makes it easier.

•again think back to Fibonacci, we know the 1st and 2nd by definition

•we can then easily calculate the 3rd

•since we now have the second and 3rd we can easily (O(1)) calculate the 4th
and so on

This doesn't follow the same order as the recursive calls but contains the same
recurrence relation
•that that is Fibonacci(x) = Fibonacci(x-1) + Fibonacci(x-2) so if we fill in a table
in increasing value we know the values needed will be there

Dynamic Programming

Imagine you are in a city that is on a grid, but also has all
of the diagonal roads going North-West to South-East

•You want to get from the far SE corner to the NW
corner

•The problem is the city is very hilly and you've been
walking around like a tourist all day

•Thankfully the map you have has the incline of each
road segment

•How do you plan your route? (assuming you don't
want to backtrack by going south or east at all)

Bit Operations
Rank & Select are operations on binary numbers which are defined as:

for some binary string B[0...(n-1)] and c∈{0,1}

rankc(B, i) = {j ∣ 0 ≤ j ≤ i, B[j] = c}
selectc(B, j) = min {i ∣ rankc (B, i) = j}

i 0 1 2 3 4 5 6 7 8 9
B 0 1 1 0 1 0 0 1 0 1

rank1 0 1 2 2 3 3 3 4 4 5
rank0 1 1 1 2 2 3 4 4 5 5

note that rank0(B,i) = i - rank1(B,i) + 1

j select1 select0

1 1 0

2 2 3

3 4 5

4 7 6

5 8 9

Where do we apply this?
Graphs

•Genome Assembly

•Hashing

•Phylogeny (trees)

Network Flow

•Transcript Assembly/Quantification

Dynamic Programming

•Alignment

•RNA Folding

