String Matching

CS 4364/5364

Exact String Matching

- Given string P, called the pattern, and a longer string T, called the text, the exact matching problem is to find all occurrences, if any, of P in T.
- Example:
- $P=$ "aba", $T=$ "bbabaxababay"
- P occurs in T at positions: $3,7, \& 9$
- Note, that 2 occurrences overlap

The naive method

bbabaxababay
 àba

The naive method

bbabaxababay aba

The naive method

bbabaxababay abá

The naive method

bbabaxababay
 aba

The naive method

Another example

aaaaaaaaaaaa
 $\begin{array}{ccc}A & A & A \\ -3 & -1 & -1 \\ y & V & 4\end{array}$
 aaa

The naive method

Another example

aaaaaaaaaaaa aaa

How many comparisons would the naive algorithm do on this example?
What did we already know about this comparison before we started?

Example of faster methods

xabxyabxyabxz abxyabxz
abyyabx\%
abxyabxz abxyabxz abxyabxz abyyabxz

xabxyabxyabxz
abxyabxz
abxyaby\%
abyyabyz
xabxyabxyabxz
abxyabxz
abxyabsx
abxyabyz

If we knew ahead of time the comparisons we could skip (based on where in P the mismatches are), we could decrease the running time!

Preprocessing

Definition Given a string S and a position $i>1$, let $\boldsymbol{M}_{\boldsymbol{i}}(\mathbf{S})$ be the length of the longest substring if S that matches a prefix of S.
that is, $M_{i}(S)=j$ if $S[1 \ldots j]=S[i \ldots(i+j-1)]($ and $S[1 \ldots(j+1)] \neq S[i \ldots(i+j)])$
for $S=$ "aabcaabxaaz"

$$
\begin{aligned}
& M_{5}(S)=3 \\
& M_{6}(S)=1 \\
& M_{7}(S)=M_{8}(S)=0 \\
& M_{9}(S)=2
\end{aligned}
$$

Calculation of all M_{i} can be done in $O(n)$ time (where $|S|=n$)

Linear-time exact sequence matching

Algorithm

- Construct a new sequence $S=P \$ T$ where $\$$ is a letter thats not in either of the two strings
- Compute all of the $\mathrm{M}_{\mathrm{i}}(\mathrm{S})$ values
- Do a linear scan to find and return all positions $i>/ P /$ where $M_{i}(S)==P$

Do we need to save $M_{(n+5)}$?
(where $I P I=n$)

Boyer-Moore (at a high level)

- Worst-case running time is still $O(m+n)$, but in practice it is sub-linear
- Re-think the problem and look at suffixes of the pattern, then use some preprocessing information to skip the pattern ahead by more than 1

Boyer-Moore (at a high level)

- The bad character rule
- when matching (from the right) and a mismatch is found (say x in $T \neq y$ in P)
- shift the pattern so that the next instance of x in P that is to the left of the current position is at the current position in T

xabxyabxyabxz
 abxyabx\%

Boyer-Moore (at a high level)

- The good suffix rule
- suppose a substring of T, t matches a suffix of P but a mismatch occurs at the next character
- find the right most copy of t in P such that the preceding character is different
- shift P so that this substring is matched with t

prstabstubabvqxrst qcabdabdab

Boyer-Moore

1. given P and T (s.t. $|P|=n,|T|=m$)
2. let $k=n$
3. compare P and T starting with $P[n]$ and $T[k]$
4. if no mismatch is found:

The good suffix rule

- suppose a substring of T, t matches a suffix of P but a mismatch occurs at the next character
- find the right most copy of t in P such that the preceding character is different
- shift P so that this substring is matched with t

The bad character rule

- when matching (from the right) and a mismatch is found (say x in $T \neq y$ in P)
- report a solution
- shift the pattern so that the next instance of x in P that is to the left of the current position is at the current position in T

5. otherwise: increment k using the good suffix \& bad character rules
6. go to (2) while $k<m$

Other methods

- Knuth-Morris-Pratt (KMP)
- able to work with T arriving online
- running time is still $O(m+n)$
- uses pattern suffixes (closer to suffix tree which we will see next)
- Aho-Corasick
- efficiently finds all occurrences of a set of patterns
- puts patterns into a tree to search all at once
- Karp-Rabin
- uses bit operations in place of character comparisons
- structure similar to on-hot-encodings to represent strings

EOit Distence

- Up to now, need the exact string in a set
- What if I wanted to know how similar two strings are?
- Problem: Given strings S_{1} and S_{2} what is the minimum number of edits (insertions, deletions, replacements) needed to convert S_{1} into S_{2} ?
- Example: $S_{1}=$ baseball \& $S_{2}=$ ballcap.
- \quad RRR DR
baseball
ballca p
- 5 operations: change $\mathrm{s} \rightarrow \mathrm{l}, \mathrm{e} \rightarrow \mathrm{l}, \mathrm{b} \rightarrow \mathrm{c}$, delete $\mathrm{l}, \mathrm{l} \rightarrow \mathrm{p}$

Global Alignment Problem

- An alignment of two sequences is formed by inserting gap characters,' - ', in arbitrary locations along the sequences so that they end up wit the same length and there are no two spaces at the same position of the two augmented strings.

```
baseball
-ballcap
```

baseball--_
----ballcap
baseball
ballca-p

Alignment

- In general, associate a similarity score with each pair of aligned characters:
- for characters $x, y \in \Sigma \cup\{-\}$, let $\delta(x, y)$ be the similarity of x and y
- Let the score, Δ, of an alignment, $A=\left(S^{\prime}{ }_{1}, S^{\prime}{ }_{2}\right)$, be defined as $\Delta(A)=: \sum_{1 \leq i \leq\left|S_{1}^{\prime}\right|} \delta\left(S_{1}^{\prime}[i], S_{s}^{\prime}[i]\right)$
- Goal of alignment is to maximize that sum

	$\mathbf{-}$	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{e}	\mathbf{l}	\mathbf{p}	\mathbf{s}
$\mathbf{-}$		-1	-1	-1	-1	-1	-1	-1
\mathbf{a}	-1	0	-1	-1	-1	-1	-1	-1
\mathbf{b}	-1	-1	0	-1	-1	-1	-1	-1
\mathbf{c}	-1	-1	-1	0	-1	-1	-1	-1
\mathbf{e}	-1	-1	-1	-1	0	-1	-1	-1
$\mathbf{1}$	-1	-1	-1	-1	-1	0	-1	-1
\mathbf{p}	-1	-1	-1	-1	-1	-1	0	-1
\mathbf{s}	-1	-1	-1	-1	-1	-1	-1	$\mathbf{0}$

Alignment

- In general, associate a similarity score with each pair of aligned characters:
- for characters $x, y \in \Sigma \cup\{-\}$, let $\delta(x, y)$ be the similarity of x and y
- Let the score, Δ, of an alignment, $A=\left(S^{\prime}{ }_{1}, S^{\prime}{ }_{2}\right)$, be defined as $\Delta(A)=: \sum_{1 \leq i \leq\left|S_{1}^{\prime}\right|} \delta\left(S_{1}^{\prime}[i], S_{s}^{\prime}[i]\right)$
- Goal of alignment is to maximize that sum

	-	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{e}	\mathbf{l}	\mathbf{p}	\mathbf{s}
		0	0	0	0	0	0	0
\mathbf{a}	0	2	-1	-1	-1	-1	-1	-1
\mathbf{b}	0	-1	2	-1	-1	-1	-1	-1
\mathbf{c}	0	-1	-1	2	-1	-1	-1	-1
\mathbf{e}	0	-1	-1	-1	2	-1	-1	-1
\mathbf{l}	0	-1	-1	-1	-1	2	-1	-1
\mathbf{p}	0	-1	-1	-1	-1	-1	2	-1
\mathbf{s}	0	-1	-1	-1	-1	-1	-1	2

baseball-------ballcap

Needleman-Wunsch

- brute-force, compute all possible alignments and score them, would take exponential time to compute the optimal alignment
- using dynamic programming Needleman and Wunsch [1970] found that the optimal alignment can be computed in $O(m n)$-time.

Needleman-Wunsch

- Dynamic programming, generally, works by solving sub-problems, storing the results, and combining the solution to (most times) multiple subproblems to find the answer.
- Given two strings $S[1 \ldots n]$ and $T[1 \ldots m]$, find the best alignment.

Needleman-Wunsch

- Dynamic programming, generally, works by solving sub-problems, storing the results, and combining the solution to (most times) multiple subproblems to find the answer.
- Given two strings $S[1 \ldots n]$ and $T[1 \ldots m]$, find the best alignment given the best alignments of:
- S[1...(n-1)] and T[1...m],
- $S[1 \ldots n]$ and $T[1 \ldots(m-1)]$, and
- $S[1 \ldots(n-1)]$ and $T[1 \ldots(m-1)]$

Needleman-Wunsch

- Define an $n \times m$ array V, the cell $V(i, j)$ will hold the score of the best sub alignments of $S[1 \ldots i]$ and $T[1 \ldots j]$
- The recurrence relation (the base of any DP)

$$
V(i, j)=\max \begin{cases}V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

- The initialization is:

$$
\begin{aligned}
& V(0,0)=0 \\
& V(0, j)=V(0, j-1)+\delta(-, T[j]) \\
& V(i, 0)=V(i-1,0)+\delta(S[i],-)
\end{aligned}
$$

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

		A	A	C	C	C	G
	0						
A				the ment ""			
G							
G							
C							
C							

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

		A	A	C	C	C	G
	0						
A	-1						
A G				f the ne d ""			
G							
C							
C							

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

	0	-1	-2	-3	-4	-5	-6
A	-1		The cost of the optimal alignment of "A" and "A"				
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
\begin{aligned}
& V(0,0)+\delta(A, A)=1 \\
& \begin{array}{c}
+{ }_{\mathbf{A}}^{\mathbf{A}} \\
V(0,1)+\delta(A,-)=-2
\end{array} \\
& { }_{A}{ }^{-}+{ }_{-}^{A} \\
& V(1,0)+\delta(-, \mathrm{A})=-2 \\
& { }_{-}^{\mathrm{A}}+{ }_{\mathrm{A}}^{-}
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

	A		A	C	C	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1					
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

	A		A	c	c	c	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1	0	-1	-2	-3	-4
A	-2	0	2	1	0	-1	-2
G	-3	-1	1	1	0	-1	0
G	-4	-2	0	0	0	-1	0
c	-5	-3	-1	1	1	1	0
c	-6	-4	-2	0	2	2	1

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

	0	-1	-2	-3	-4	-5	-6
A	-2						
G	-3						
G	-4						
C	-5						
C	-6						

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

		A	A	c	c	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1	0	-1	-2	-3	-4
A	-2	0	2	1	0	-1	-2
G	-3	-1	1	1	0	-1	0
G	-4	-2	0	0		-1	0
c	-5	-3	-1	1	1	1	0
c	-6	-4	-2	0	2		1

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

A AC-C C G AAGGCC-

		A	A	C	C	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1		0	-1	-2	-3	-4
A	-2	0		1	0	-1	-2
G	-3	-1			0	-1	0
G	-4	-2	0		0		0
C	-5	-3	-1	1		1	0
C	-6	-4	-2	0	2		1

Needleman-Wunch

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

AAC-CCG
AAGGCC-

AA-CCCG AAGGCC-

		A	A	C	C	C	G
	0	-1	-2	-3	-4	-5	-6
A			0	-1	-2	-3	-4
A	-2			1	0	-1	-2
G	-3	-1			0	-1	0
G	-4	-2			0	-1	0
C	-5	-3	-1			1	0
C	-6	-4	-2	0			1

Needleman-Wunch

What about the running time and memory requirements?

- Filling in each cell of the table:
O(1)-time, O(1)-space
- Table is $n \times m$
- Filling in the table:

$$
O(m n) \text {-time, } O(m n) \text {-space }
$$

AAC-CCG
AAGGCC-

- Traceback?
- Each column of the alignment:
O(1)-time
- Maximum Alignment Length:

$$
O(m+n)
$$

(times the number of optimal alignments)
A A-CCCG AAGGCC-

| | A | A | C | C | C | G | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| A | -1 | 1 | 0 | -1 | -2 | -3 | -4 |
| A | -2 | 0 | 2 | 1 | 0 | -1 | -2 |
| G | -3 | -1 | 1 | 1 | 0 | -1 | 0 |
| G | -4 | -2 | 0 | 0 | 0 | -1 | 0 |
| C | -5 | -3 | -1 | 1 | 1 | 1 | 0 |
| C | -6 | -4 | -2 | 0 | 2 | 2 | 1 |

Local Alignment

- Given two strings S and T, find the two substrings, A of S and B of T, with the highest alignment score.
- Brute-force: Align all substrings of S with all substrings of T. There are $\binom{n}{2}$ substrings of S, and $\binom{m}{2}$ substrings of T. The total running time would be $O\left(n^{3} m^{3}\right)$!
- Smith and Waterman [1981] developed an algorithm, similar to Needleman-Wunch, that is able to find the optimal local alignment in $O(m n)$-time.

Smith-Waterman

- Still going to use an $n \times m$ sized matrix V, but:
- each index (i, j) will hold the maximum global alignment score for all substrings $S[k \ldots . \ldots]$ and $T[h \ldots . . j]$ where $1 \leq k \leq i$ and $1 \leq h \leq j$ (the substrings could be empty).
- Then the score of the best local alignment is not necessarily in $V(i, j)$, but is $\max V(i, j)$
i, j

Smith-Waterman

- The recurrence relation

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

- The initialization is:

$$
V(0, j)=V(i, 0)=0
$$

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

		A	A	C	C	C	G
	0	0	0	0	0	0	0
A							
A	0						
G	0						
G	0						
C	0						
C	0						

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

		A	A	C	C	C	G
	0	0	0	0	0	0	0
A	0	1					
A	0						
G	0						
G	0						
C	0						
C	0						

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

		A	A	C	C	C	G
	0	0			0	0	0
A	0						
A	0						
G	0						
G	0						
C	0						
C	0						

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

		A	A	C	C	C	G
	0		0	0	0	0	0
A	0	1	1				
A	0						
G	0						
G	0						
C	0						
C	0						

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

		A	A	C	C	C	G
	0		0	0	0	0	0
A	0	1		0			
A	0						
G	0						
G	0						
C	0						
C	0						

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

$$
V(i, j)=\max \begin{cases}0 & \text { align empty strings } \\ V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ V(i-1, j)+\delta(S[i],-) & \text { delete } \\ V(i, j-1)+\delta(-, T[j]) & \text { insert }\end{cases}
$$

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

		c	c	C	G
	0	0	0	0	0
A		0	0	0	0
A	0	1	0	0	
G	0	1	0 。	0	1
G	0	0	0	0	1
C	0	1	1	1	0
c	0	1			1

Smith-Waterman

$$
\begin{aligned}
& \delta(-, x)=-1 \text { for } x \in \Sigma \\
& \delta(x,-)=-1 \text { for } x \in \Sigma \\
& \delta(x, y)=1 \text { for } y=x \\
& \delta(x, y)=-1 \text { for } y \neq x
\end{aligned}
$$

Semi-global Alignment

- In some cases one of the sequence may be smaller than the other
- in biology, this may be due to sequencing ending early or some process in the cell
- In this case, we may want to not penalize gaps at the beginning or end of one of the sequences
- How can this be done using a slight adjustment to the Myers-Miller algorithm?

Lets talk about gaps!

- Up to now inserting a gap character (-) was always a constant cost operation
- In real life (i.e. in biology) starting an inserting 10 bases and inserting 12 bases causes close the same amount of disruption, whereas inserting 0 bases and inserting 2 is a big difference
- So we want to score alignments with this in mind
- Generally, for a gap (set of contiguous insertions or deletions) of length k, we want the score to be some function $f(k)$ of the length

General Gap Costs

- Given that a gap of length k receives a score $f(k)$, in global alignment we change the recursion to the following:

$$
V(i, j)=\max \begin{cases}V(i-1, j-1)+\delta(S[i], T[i]) & \text { match/mismatch } \\ \max _{0 \leq h \leq j-1}\{V(i, h)-f(j-h)\} & \text { insert T[h+1...j] } \\ \max _{0 \leq h \leq j-1}\{V(h, j)-f(i-h)\} & \text { delete } \mathrm{S}[\mathrm{~h}+1 \ldots \mathrm{i}]\end{cases}
$$

- And initialization changes slightly:
$V(0,0)=0$
$V(0, j)=-f(j)$
$V(i, 0)=-f(i)$
- This change also increases the running time. Each entry now takes $O(m+n)$-time, therefore the total running time is $O(m n(m+n))$

Affine Gap Costs

- The one everyone uses!
- Attributed to Gotoh [1982]
- Define the function $f_{a, b}(k)=: a+b^{*} k$ where a and b are tunable parameters (if $a=0$, this is the same as before)
- Can still be solved in $O(m n)$-time and $O(m n)$-space, but we need a bit more sophistication

Gotoh's Algorithm

- Define $3 n x m$ matricies:
- G -- the alignment score for alignments that end in a match (the last column)
- F-- the alignment score for alignments that end in an insertion
- E-- the alignment score for alignments that end in a deletion

Gotoh's Algorithm

Recursion

$$
\begin{aligned}
& F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j)-b \\
G(i-1, j)-f_{a, b}(1)
\end{array}\right. \\
& E(i, j)=\max \left\{\begin{array}{l}
E(i, j-1)-b \\
G(i, j-1)-f_{a, b}(1)
\end{array}\right. \\
& G(i, j)=\max \left\{\begin{array}{l}
G(i-1, j-1)+\delta(S[i], T[j]) \\
E(i, j) \\
F(i, j)
\end{array}\right.
\end{aligned}
$$

Initialization

$$
\begin{aligned}
& G(0, j)=E(0, j)=-1 f_{a, b}(j) \\
& G(i, 0)=F(i, 0)=-1 f_{a, b}(i) \\
& E(i, 0)=-\infty \\
& F(0, j)=-\infty
\end{aligned}
$$

$G(0, j)=E(0, j)=-1 f_{a, b}(j)$
Gotoh's Algorithm
$G(i, 0)=F(i, 0)=-1 f_{a, b}(i)$
$E(i, 0)=-\infty$
$F(0, j)=-\infty$

E	A				C	C	G			A	A	C	C	C	G
	$-\infty$		$+\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$		0	-4	-5	-6	-7	-8	-9
A	-4	-8						A	-4						
A	-5							A	-5						
G	-6							G	-6						
G	-7							G	-7						
C	-8							C	-8						
C	-9							C	-9						

$\delta(x, y)=10$ for $\mathrm{y}=\mathrm{x}$
$\delta(x, y)=-2$ for $y \neq x$

$$
E(i, j)=\max \left\{\begin{array}{l}
E(i, j-1)-b \\
G(i, j-1)-f_{a, b}(1)
\end{array}\right.
$$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j)-b \\
G(i-1, j)-f_{a, b}(1)
\end{array}\right.
$$

$$
G(i, j)=\max \left\{\begin{array}{l}
G(i-1, j-1)+\delta(S[i], T[j]) \\
E(i, j) \\
F(i, j)
\end{array}\right.
$$

$G(0, j)=E(0, j)=-1 f_{a, b}(j)$
$G(i, 0)=F(i, 0)=-1 f_{a, b}(i)$
Gotoh's Algorithm
$E(i, 0)=-\infty$
$F(0, j)=-\infty$

E		A	A	C	C	C	G
	$-\infty$						
A	-4	-8					
A	-5						
G	-6						
G	-7						
C	-8						
C	-9						

$G(i, j)=\max \left\{\begin{array}{l}G(i-1, j-1)+\delta(S[i], T[j]) \\ E(i, j) \\ F(i, j)\end{array}\right.$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j)-b \\
G(i-1, j)-f_{a, b}(1)
\end{array}\right.
$$

$\delta(x, y)=10$ for $\mathrm{y}=\mathrm{x}$
$\delta(x, y)=-2$ for $y \neq x$

$$
E(i, j)=\max \left\{\begin{array}{l}
E(i, j-1)-b \\
G(i, j-1)-f_{a, b}(1)
\end{array}\right.
$$

$G(0, j)=E(0, j)=-1 f_{a, b}(j)$
$G(i, 0)=F(i, 0)=-1 f_{a, b}(i)$
Gotoh's Algorithm
$E(i, 0)=-\infty$
$F(0, j)=-\infty$

$$
E(i, j)=\max \left\{\begin{array}{l}
E(i, j-1)-b \\
G(i, j-1)-f_{a, b}(1)
\end{array}\right.
$$

$$
G(i, j)=\max \left\{\begin{array}{l}
G(i-1, j-1)+\delta(S[i], T[j]) \\
E(i, j) \\
F(i, j)
\end{array}\right.
$$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j)-b \\
G(i-1, j)-f_{a, b}(1)
\end{array}\right.
$$

$E(i, 0)=-\infty$
$F(0, j)=-\infty$

$\delta(x, y)=10$ for $\mathrm{y}=\mathrm{x}$
$\delta(x, y)=-2$ for $y \neq \mathrm{x}$

$$
E(i, j)=\max \left\{\begin{array}{l}
E(i, j-1)-b \\
G(i, j-1)-f_{a, b}(1)
\end{array}\right.
$$

$G(i, j)=\max \left\{\begin{array}{l}G(i-1, j-1)+\delta(S[i], T[j]) \\ E(i, j) \\ F(i, j)\end{array}\right.$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j)-b \\
G(i-1, j)-f_{a, b}(1)
\end{array}\right.
$$

Gotoh's Algorithm

E		A	A C	c	C	c	G	G	A	A	C	c	c	G	F		A	A	c	c	c	G
	$-\infty$	- -	$-\infty-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$		0. -4	-5	-6 -	-7 -8	-8	-9		$-\infty$	-4	-5	-6	-7	-8	-9
A	-4	-8	-9 -1	-10-1	1-1	-12	-13	A	-4 10	$\overrightarrow{6}$	5	$\overrightarrow{4}$	$\overrightarrow{3}$	2	A	$-\infty$	-8	6	5		3	
A	-5	6	21	1	$\overrightarrow{0}$	- 1	-2	A	-5 6	20	16	15	14	13	A	$-\infty$	-9	2	16			13
G	-6	5	161	12		$\overrightarrow{10}$	$\overrightarrow{9}$	G	-6 5		181		13	24	G	$-\infty$	-10	1	15	1	13	-12
G	-7	4	151		10	$\stackrel{+}{9}$	0	G	-7 4	15	14	16	12	23	G	$-\infty$	-11	${ }^{+}$	11	10	12	-11
C	-8	3	141	13	12			c	- 3		25	24	26	22	C	$-\infty$	-12	-1	10	21		22
C	-9	2	132	21	202	22	18	C	-9 2	13	24	35	34	30	C	$-\infty$	-13	-2	8	20		30

AAC-CCG
AAGGCC-

Computing alignments in linear space

- Up to now, global, local, and semi-global alignments using fixed, general, and affine gap costs have all taken $O(m n)$-time and $O(m n)$-space
- For long sequences we may not be able to keep the whole table in main memory, therefore if the space can be reduced it would improve the practicality of the algorithms
- Hershberg [1975] shows that global alignment can be computed in $O(n+m)$-space ${ }^{1}$
- The key is that when computing V, (in row-major, left to right order) the value only depends on the row above, and the current values in the same row to the left
- But with only that observation you can find the best alignment score in linear space, but not the alignment itself

Hirschberg's Algorithm

Hirschberg's Algorithm

Hirschberg's Algorithm

Hirschberg's Algorithm

Hirschberg's Algorithm

FindMid(S[1...n],T[1..n]):
$F=$ CostOnlyNWForward(S[1...n/2],T[1...m])
$B=$ CostOnlyNWBackward(S[n/2+1...n],T[1...m])
return $\operatorname{argmax}_{j}\{F[j]+B[j]\}$
HirschbergAlign $(S[i \ldots j], T[x \ldots y])$:
if $i=j$ then compute full Needleman-Wunsch and return the alignment
mid $=(i+j) / 2$
$z=\operatorname{FindMid}(S[1 \ldots n], T[1 \ldots n])$
return HirschbergAlign(S[i...mid],T[x...z]) • HirschbergAlign(S[mid+1...j],T[z+1...y])
$O(m)$-space, freed after each call
$O(n)$-space, to store the stack

Hirschberg's Algorithm

FindMid(S[1...n],T[1...n]):
$F=$ CostOnlyNWForward(S[1...n/2],T[1..m])
$B=$ CostOnlyNWBackward(S[n/2+1...n],T[1...m])
return $\operatorname{argmax}_{j}\{F[j]+B[j]\}$

O(mn)-time
O(mn)-time
O(1)-time

HirschbergAlign(S[i...j],T[x...y]):

if $i=j$ then compute full Needleman-Wunsch and return the alignment mid $=(i+j) / 2$
$z=\operatorname{FindMid}(S[1 \ldots n], T[1 \ldots n])$
O(mn)-time
return HirschbergAlign(S[i...mid],T[x...z]) • HirschbergAlign(S[mid+1...j],T[z+1...y])
$O(m n)$-time for each call
$O(m n)$-time total

Alignment Scores

- In all of the examples we have been given δ, a, b, etc. and using fixed values we are able to find the optimal alignment in $O(m n)$-time
- Since different values of those parameter induce different alignments, how do we know which parameter values are best?
- This is a problem known as inverse parametric alignment (or just parametric alignment) where you want to find all possible alignments of the two sequences.
- How many optimal alignments do you think there are? (notice that optimal is emphasized)

