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Exact String Matching

• Given string P, called the pattern, and a longer string T, called the text, the 
exact matching problem is to find all occurrences, if any, of P in T. 


• Example: 

• P = "aba", T = "bbabaxababay"

• P occurs in T at positions: 3, 7, & 9

• Note, that 2 occurrences overlap



The naive method

bbabaxababay

aba
=?



The naive method
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The naive method
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The naive method

bbabaxababay

aba
=?



The naive method

aaaaaaaaaaaa

aaa
=? =? =?

Another example



The naive method

aaaaaaaaaaaa

aaa
=? =? =?

What did we already know about this comparison before we started?

How many comparisons would the naive algorithm do on this example?

Another example



Example of faster methods

xabxyabxyabxz
abxyabxz
abxyabxz
abxyabxz
abxyabxz
abxyabxz
abxyabxz

xabxyabxyabxz
abxyabxz
abxyabxz

abxyabxz

xabxyabxyabxz
abxyabxz
abxyabxz

abxyabxz

If we knew ahead of time the comparisons we could skip (based on where in P the mismatches are), 
we could decrease the running time!



Preprocessing
Definition Given a string S and a position i>1, let Mi(S) be the length of the 
longest substring if S that matches a prefix of S.


that is, Mi(S)=j if S[1...j] = S[i...(i+j-1)] (and S[1...(j+1)] ≠ S[i...(i+j)] )


for S = "aabcaabxaaz"

        M5(S) = 3 

        M6(S) = 1 

        M7(S) = M8(S) = 0

        M9(S) = 2 

Calculation of all Mi can 
be done in O(n) time 

(where |S| = n)



Linear-time exact sequence matching

Algorithm


• Construct a new sequence S = P$T where $ is a letter thats not in either of 
the two strings

• Compute all of the Mi(S) values 

• Do a linear scan to find and return all positions i>|P| where Mi(S) == P

Do we need to save M(n+5)? 
(where |P| = n)



Boyer-Moore (at a high level)

• Worst-case running time is still O(m+n), but in practice it is sub-linear


• Re-think the problem and look at suffixes of the pattern, then use some 
preprocessing information to skip the pattern ahead by more than 1



Boyer-Moore (at a high level)

• The bad character rule

• when matching (from the right) and a mismatch is found  

(say x in T ≠ y in P)

• shift the pattern so that the next instance of x in P that is to the left of 

the current position is at the current position in T 

xabxyabxyabxz
abxyabxzabxyabxz

Does this skip any instances of P in T?



qcabdabdab

Boyer-Moore (at a high level)
• The good suffix rule

• suppose a substring of T, t matches a suffix of P but a mismatch occurs 

at the next character

• find the right most copy of t in P such that the preceding character is 

different

• shift P so that this substring is matched with t

prstabstubabvqxrst
qcabdabdab

Does this skip any instances of P in T?



Boyer-Moore

1. given P and T (s.t. |P|=n, |T|=m)

2. let k=n 
3. compare P and T starting with P[n] and T[k] 
4. if no mismatch is found: 


• report a solution 

• increment k as much as possible


5. otherwise: increment k using the good suffix & bad character rules

6. go to (2) while k < m

The good suffix rule

• suppose a substring of T, t matches a suffix 

of P but a mismatch occurs at the next 
character


• find the right most copy of t in P such that the 
preceding character is different


• shift P so that this substring is matched with t

The bad character rule

• when matching (from the right) and a 

mismatch is found  
(say x in T ≠ y in P)


• shift the pattern so that the next instance 
of x in P that is to the left of the current 
position is at the current position in T 



Other methods
• Knuth-Morris-Pratt (KMP)

• able to work with T arriving online 
• running time is still O(m+n)

• uses pattern suffixes (closer to suffix tree which we will see next)


• Aho-Corasick 

• efficiently finds all occurrences of a set of patterns

• puts patterns into a tree to search all at once


• Karp-Rabin

• uses bit operations in place of character comparisons

• structure similar to on-hot-encodings to represent strings



Edit Distance
• Up to now, need the exact string in a set


• What if I wanted to know how similar two strings are? 


• Problem: Given strings S1 and S2 what is the minimum number of edits 
(insertions, deletions, replacements) needed to convert S1 into S2?


• Example: S1 = baseball & S2 = ballcap.

•   RRR DR  
baseball  
ballca p

• 5 operations: change s→l, e→l, b→c, delete l, l→p



Global Alignment Problem

• An alignment of two sequences is formed by inserting gap characters,'-', 
in arbitrary locations along the sequences so that they end up wit the 
same length and there are no two spaces at the same position of the two 
augmented strings. 

baseball---
----ballcap

baseball
ballca-p

baseball
-ballcap

How do we know which one of these is best?



Alignment
• In general, associate a similarity score with each pair of aligned characters:


• for characters x,y ∈Σ⋃{-}, let 𝛿(x,y) be the similarity of x and y 

• Let the score, Δ, of an alignment, A = (S'1,S'2), be defined as 


• Goal of alignment is to maximize that sum

Δ(A) =: ∑
1≤i≤|S′￼1|

δ(S′￼1[i], S′￼s[i])

- a b c e l p s

- -1 -1 -1 -1 -1 -1 -1
a -1 0 -1 -1 -1 -1 -1 -1
b -1 -1 0 -1 -1 -1 -1 -1
c -1 -1 -1 0 -1 -1 -1 -1
e -1 -1 -1 -1 0 -1 -1 -1
l -1 -1 -1 -1 -1 0 -1 -1
p -1 -1 -1 -1 -1 -1 0 -1
s -1 -1 -1 -1 -1 -1 -1 0

baseball
ballca-p



Alignment
• In general, associate a similarity score with each pair of aligned characters:


• for characters x,y ∈Σ⋃{-}, let 𝛿(x,y) be the similarity of x and y 

• Let the score, Δ, of an alignment, A = (S'1,S'2), be defined as 


• Goal of alignment is to maximize that sum

Δ(A) =: ∑
1≤i≤|S′￼1|

δ(S′￼1[i], S′￼s[i])

- a b c e l p s

- 0 0 0 0 0 0 0
a 0 2 -1 -1 -1 -1 -1 -1
b 0 -1 2 -1 -1 -1 -1 -1
c 0 -1 -1 2 -1 -1 -1 -1
e 0 -1 -1 -1 2 -1 -1 -1
l 0 -1 -1 -1 -1 2 -1 -1
p 0 -1 -1 -1 -1 -1 2 -1
s 0 -1 -1 -1 -1 -1 -1 2

baseball---
----ballcapHow can we compute an alignment  

that optimizes Δ?



Needleman-Wunsch

• brute-force, compute all possible alignments and score them, would take 
exponential time to compute the optimal alignment


• using dynamic programming Needleman and Wunsch [1970] found that 
the optimal alignment can be computed in O(mn)-time.



Needleman-Wunsch

• Dynamic programming, generally, works by solving sub-problems, storing 
the results, and combining the solution to (most times) multiple sub-
problems to find the answer. 


• Given two strings S[1...n] and T[1...m], find the best alignment. by first 
finding the best alignments of:

• S[1...(n-1)]  and  T[1...m],  
• S[1...n]       and  T[1...(m-1)], and 
• S[1...(n-1)]  and  T[1...(m-1)]



Needleman-Wunsch

• Dynamic programming, generally, works by solving sub-problems, storing 
the results, and combining the solution to (most times) multiple sub-
problems to find the answer. 


• Given two strings S[1...n] and T[1...m], find the best alignment given the 
best alignments of:

• S[1...(n-1)]  and  T[1...m],  
• S[1...n]       and  T[1...(m-1)], and 
• S[1...(n-1)]  and  T[1...(m-1)]



Needleman-Wunsch
• Define an nxm array V, the cell V(i,j) will hold the score of the best sub 

alignments of S[1...i] and T[1...j]


• The recurrence relation (the base of any DP) 




• The initialization is: 
V(0,0) = 0 
V(0,j) = V(0,j-1) + 𝛿(-,T[j]) 
V(i,0) = V(i-1,0) + 𝛿(S[i],-) 

V(i, j) = max
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert

Optimal alignment score is in V(n,m)



Needleman-Wunch

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

25

A A C C C G

0

A -1

A

G

G

C

C

The cost of the 
optimal alignment 

of "A" and ""



Needleman-Wunch

26

A A C C C G

0

A -1

A -2

G

G

C

C

The cost of the 
optimal alignment 

of "AA" and ""

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 



Needleman-Wunch

27

A A C C C G

0 -1

A -1

A -2

G -3

G -4

C -5

C -6

The cost of the 
optimal alignment 

of "" and "A"𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 



Needleman-Wunch

28

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1

A -2

G -3

G -4

C -5

C -6

The cost of the 
optimal alignment 

of "A" and "A"

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 



𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

Needleman-Wunch

29

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1

A -2

G -3

G -4

C -5

C -6V(i, j) = max
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert

A
-

-
A+

V(1,0) + 𝛿(-,A) = -2

A
-

-
A +

V(0,1) + 𝛿(A,-) = -2

A
A+

V(0,0) + 𝛿(A,A) = 1

1



Needleman-Wunch

30

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1 1

A -2

G -3

G -4

C -5

C -6

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

+𝛿(-,A)

+𝛿(A,-)

+𝛿(A,A)
0



Needleman-Wunch

31

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1 1 0

A -2

G -3

G -4

C -5

C -6

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

+𝛿(-,C)

+𝛿(A,-)

+𝛿(A,C)
-1



𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

Needleman-Wunch

32

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1 1 0 -1 -2 -3 -4

A -2 0 2 1 0 -1 -2

G -3 -1 1 1 0 -1 0

G -4 -2 0 0 0 -1 0

C -5 -3 -1 1 1 1 0

C -6 -4 -2 0 2 2 1



Needleman-Wunch

33

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1

A -2

G -3

G -4

C -5

C -6

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

+𝛿(-,A)

+𝛿(A,-)

+𝛿(A,A)
1



𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

Needleman-Wunch

34

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1 1 0 -1 -2 -3 -4

A -2 0 2 1 0 -1 -2

G -3 -1 1 1 0 -1 0

G -4 -2 0 0 0 -1 0

C -5 -3 -1 1 1 1 0

C -6 -4 -2 0 2 2 1



𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

Needleman-Wunch

35

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1 1 0 -1 -2 -3 -4

A -2 0 2 1 0 -1 -2

G -3 -1 1 1 0 -1 0

G -4 -2 0 0 0 -1 0

C -5 -3 -1 1 1 1 0

C -6 -4 -2 0 2 2 1

G  
-

C
C

C
C

-  
G

C
G

A
A

A
A



Needleman-Wunch

36

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1 1 0 -1 -2 -3 -4

A -2 0 2 1 0 -1 -2

G -3 -1 1 1 0 -1 0

G -4 -2 0 0 0 -1 0

C -5 -3 -1 1 1 1 0

C -6 -4 -2 0 2 2 1

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

G  
-

C
C

C
C

-  
G

C
G

A
A

A
A

G  
-

C
C

C
C

C  
G

-
G

A
A

A
A



Needleman-Wunch

37

A A C C C G

0 -1 -2 -3 -4 -5 -6

A -1 1 0 -1 -2 -3 -4

A -2 0 2 1 0 -1 -2

G -3 -1 1 1 0 -1 0

G -4 -2 0 0 0 -1 0

C -5 -3 -1 1 1 1 0

C -6 -4 -2 0 2 2 1

What about the running time and memory 
requirements?

• Filling in each cell of the table: 

            O(1)-time, O(1)-space

• Table is nxm

• Filling in the table: 

           O(mn)-time, O(mn)-space

• Traceback? 

• Each column of the alignment: 

        O(1)-time

• Maximum Alignment Length: 

        O(m+n)

 (times the number of optimal alignments) 

G  
-

C
C

C
C

-  
G

C
G

A
A

A
A

G  
-

C
C

C
C

C  
G

-
G

A
A

A
A



Local Alignment
• Given two strings S and T, find the two substrings, A of S and B of T, with 

the highest alignment score.  

• Brute-force: Align all substrings of S with all substrings of T. There are 

 substrings of S, and  substrings of T. The total running time 

would be O(n3m3)! 

• Smith and Waterman [1981] developed an algorithm, similar to 
Needleman-Wunch, that is able to find the optimal local alignment in 
O(mn)-time. 

(n
2) (m

2 )



Smith-Waterman

• Still going to use an nxm sized matrix V, but:


• each index (i,j) will hold the maximum global alignment score for all 
substrings S[k....i] and T[h...j] where 1≤k≤i and 1≤h≤j (the substrings 
could be empty). 


• Then the score of the best local alignment is not necessarily in V(i,j), but is 
max

i,j
V(i, j)



Smith-Waterman

• The recurrence relation 




• The initialization is: 
    V(0,j) = V(i,0) = 0 

V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0

A 0

G 0

G 0

C 0

C 0

+𝛿(-,A)

+𝛿(A,-)

+𝛿(A,A)

V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert

0



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1

A 0

G 0

G 0

C 0

C 0V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1

A 0

G 0

G 0

C 0

C 0

+𝛿(-,A)

+𝛿(A,-)

+𝛿(A,A)

V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert

0



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1 1

A 0

G 0

G 0

C 0

C 0V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1 1

A 0

G 0

G 0

C 0

C 0

+𝛿(-,C)

+𝛿(A,-)

+𝛿(A,C)

V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert

0



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1 1 0

A 0

G 0

G 0

C 0

C 0V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1 1 0 0 0 0

A 0 1 2 1 0 0 0

G 0 0 1 1 0 0 1

G 0 0 0 0 0 0 1

C 0 0 0 1 1 1 0

C 0 0 0 1 2 2 1V(i, j) = max

0 align empty strings
V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch
V(i − 1,j) + δ(S[i], − ) delete
V(i, j − 1) + δ( − , T[ j]) insert



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1 1 0 0 0 0

A 0 1 2 1 0 0 0

G 0 0 1 1 0 0 1

G 0 0 0 0 0 0 1

C 0 0 0 1 1 1 0

C 0 0 0 1 2 2 1



Smith-Waterman

𝛿(-,x) = -1 for x∈Σ 
𝛿(x,-) = -1 for x∈Σ 
𝛿(x,y) = 1 for y = x 
𝛿(x,y) = -1 for y ≠ x 

A A C C C G

0 0 0 0 0 0 0

A 0 1 1 0 0 0 0

A 0 1 2 1 0 0 0

G 0 0 1 1 0 0 1

G 0 0 0 0 0 0 1

C 0 0 0 1 1 1 0

C 0 0 0 1 2 2 1

C
C

C
C



Semi-global Alignment

• In some cases one of the sequence may be smaller than the other

• in biology, this may be due to sequencing ending early or some process 

in the cell

• In this case, we may want to not penalize gaps at the beginning or end of 

one of the sequences

• How can this be done using a slight adjustment to the Myers-Miller 

algorithm?



Lets talk about gaps! 
• Up to now inserting a gap character (-) was always a constant cost 

operation


• In real life (i.e. in biology) starting an inserting 10 bases and inserting 12 
bases causes close the same amount of disruption, whereas inserting 0 
bases and inserting 2 is a big difference


• So we want to score alignments with this in mind


• Generally, for a gap (set of contiguous insertions or deletions) of length k, 
we want the score to be some function f(k) of the length



General Gap Costs
• Given that a gap of length k receives a score f(k), in global alignment we change the 

recursion to the following: 




• And initialization changes slightly: 
V(0,0) = 0 
V(0,j) = -f(j) 
V(i,0) = -f(i) 

• This change also increases the running time. Each entry now takes O(m+n)-time, therefore 
the total running time is O(mn(m+n))

V(i, j) = max

V(i − 1,j − 1) + δ(S[i], T[i]) match/mismatch

max0≤h≤ j−1 {V(i, h) − f( j − h)} insert T[h+1...j]

max0≤h≤ j−1 {V(h, j) − f(i − h)} delete S[h+1...i]



Affine Gap Costs

• The one everyone uses!


• Attributed to Gotoh [1982]


• Define the function fa,b(k) =: a + b * k where a and b are tunable parameters 
(if a=0, this is the same as before)


• Can still be solved in O(mn)-time and O(mn)-space, but we need a bit 
more sophistication 



Gotoh's Algorithm 

• Define 3 nxm matricies: 


• G -- the alignment score for alignments that end in a match (the last 
column)


• F -- the alignment score for alignments that end in an insertion


• E -- the alignment score for alignments that end in a deletion



Gotoh's Algorithm 
Initialization 

G(i, j) = max
G(i − 1,j − 1) + δ(S[i], T[ j])
E(i, j)
F(i, j)

F(i, j) = max {F(i − 1,j) − b
G(i − 1,j) − fa,b(1)

E(i, j) = max {E(i, j − 1) − b
G(i, j − 1) − fa,b(1)

Recursion
G(0,j) = E(0,j) = − 1fa,b( j)
G(i,0) = F(i,0) = − 1fa,b(i)
E(i,0) = − ∞
F(0,j) = − ∞



Gotoh's Algorithm 
E A A C C C G

-∞ -∞ -∞ -∞ -∞ -∞ -∞

A -4

A -5

G -6

G -7

C -8

C -9

G A A C C C G

0 -4 -5 -6 -7 -8 -9

A -4

A -5

G -6

G -7

C -8

C -9

F A A C C C G

-∞ -4 -5 -6 -7 -8 -9

A -∞

A -∞

G -∞

G -∞

C -∞

C -∞

G(i, j) = max
G(i − 1,j − 1) + δ(S[i], T[ j])
E(i, j)
F(i, j)

F(i, j) = max {F(i − 1,j) − b
G(i − 1,j) − fa,b(1)E(i, j) = max {E(i, j − 1) − b

G(i, j − 1) − fa,b(1)

G(0,j) = E(0,j) = − 1fa,b( j)
G(i,0) = F(i,0) = − 1fa,b(i)
E(i,0) = − ∞
F(0,j) = − ∞

𝛿(x,y) = 10 for y = x 
𝛿(x,y) = -2 for y ≠ x


a = 3 
b = 1 

-b

-b -a

-8



Gotoh's Algorithm 
E A A C C C G

-∞ -∞ -∞ -∞ -∞ -∞ -∞

A -4 -8

A -5

G -6

G -7

C -8

C -9

G A A C C C G

0 -4 -5 -6 -7 -8 -9

A -4

A -5

G -6

G -7

C -8

C -9

F A A C C C G

-∞ -4 -5 -6 -7 -8 -9

A -∞

A -∞

G -∞

G -∞

C -∞

C -∞

G(i, j) = max
G(i − 1,j − 1) + δ(S[i], T[ j])
E(i, j)
F(i, j)

F(i, j) = max {F(i − 1,j) − b
G(i − 1,j) − fa,b(1)E(i, j) = max {E(i, j − 1) − b

G(i, j − 1) − fa,b(1)

G(0,j) = E(0,j) = − 1fa,b( j)
G(i,0) = F(i,0) = − 1fa,b(i)
E(i,0) = − ∞

𝛿(x,y) = 10 for y = x 
𝛿(x,y) = -2 for y ≠ x


a = 3 
b = 1 

-b

-b -a

-8

F(0,j) = − ∞



Gotoh's Algorithm 
E A A C C C G

-∞ -∞ -∞ -∞ -∞ -∞ -∞

A -4 -8

A -5

G -6

G -7

C -8

C -9

G A A C C C G

0 -4 -5 -6 -7 -8 -9

A -4

A -5

G -6

G -7

C -8

C -9

F A A C C C G

-∞ -4 -5 -6 -7 -8 -9

A -∞ -8

A -∞

G -∞

G -∞

C -∞

C -∞

G(i, j) = max
G(i − 1,j − 1) + δ(S[i], T[ j])
E(i, j)
F(i, j)

F(i, j) = max {F(i − 1,j) − b
G(i − 1,j) − fa,b(1)E(i, j) = max {E(i, j − 1) − b

G(i, j − 1) − fa,b(1)

G(0,j) = E(0,j) = − 1fa,b( j)
G(i,0) = F(i,0) = − 1fa,b(i)
E(i,0) = − ∞

𝛿(x,y) = 10 for y = x 
𝛿(x,y) = -2 for y ≠ x


a = 3 
b = 1 

10
+𝛿(A,A)

F(0,j) = − ∞



Gotoh's Algorithm 
E A A C C C G

-∞ -∞ -∞ -∞ -∞ -∞ -∞

A -4 -8 -9 -10 -11 -12 -13

A -5 6 2 1 0 -1 -2

G -6 5 16 12 11 10 9

G -7 4 15 14 10 9 20

C -8 3 14 13 12 8 19

C -9 2 13 21 20 22 18

G A A C C C G

0 -4 -5 -6 -7 -8 -9

A -4 10 6 5 4 3 2

A -5 6 20 16 15 14 13

G -6 5 16 18 14 13 24

G -7 4 15 14 16 12 23

C -8 3 14 25 24 26 22

C -9 2 13 24 35 34 30

F A A C C C G

-∞ -4 -5 -6 -7 -8 -9

A -∞ -8 6 5 4 3 2

A -∞ -9 2 16 15 14 13

G -∞ -10 1 15 14 13 12

G -∞ -11 0 11 10 12 11

C -∞ -12 -1 10 21 20 22

C -∞ -13 -2 8 20 31 30

G(i, j) = max
G(i − 1,j − 1) + δ(S[i], T[ j])
E(i, j)
F(i, j)

F(i, j) = max {F(i − 1,j) − b
G(i − 1,j) − fa,b(1)E(i, j) = max {E(i, j − 1) − b

G(i, j − 1) − fa,b(1)

G(0,j) = E(0,j) = − 1fa,b( j)
G(i,0) = F(i,0) = − 1fa,b(i)
E(i,0) = − ∞

𝛿(x,y) = 10 for y = x 
𝛿(x,y) = -2 for y ≠ x


a = 3 
b = 1 

F(0,j) = − ∞



Gotoh's Algorithm 
E A A C C C G

-∞ -∞ -∞ -∞ -∞ -∞ -∞

A -4 -8 -9 -10 -11 -12 -13

A -5 6 2 1 0 -1 -2

G -6 5 16 12 11 10 9

G -7 4 15 14 10 9 20

C -8 3 14 13 12 8 19

C -9 2 13 21 20 22 18

G A A C C C G

0 -4 -5 -6 -7 -8 -9

A -4 10 6 5 4 3 2

A -5 6 20 16 15 14 13

G -6 5 16 18 14 13 24

G -7 4 15 14 16 12 23

C -8 3 14 25 24 26 22

C -9 2 13 24 35 34 30

F A A C C C G

-∞ -4 -5 -6 -7 -8 -9

A -∞ -8 6 5 4 3 2

A -∞ -9 2 16 15 14 13

G -∞ -10 1 15 14 13 12

G -∞ -11 0 11 10 12 11

C -∞ -12 -1 10 21 20 22

C -∞ -13 -2 8 20 31 30

G
-

C
C

C
C

-
G

C
G

A  
A

A  
A

(6,6)(5,6)(4,5)(3,4)(3,3)(2,2)(1,1)(0,0)



Computing alignments in linear space
• Up to now, global, local, and semi-global alignments using fixed, general, and 

affine gap costs have all taken O(mn)-time and O(mn)-space


• For long sequences we may not be able to keep the whole table in main memory, 
therefore if the space can be reduced it would improve the practicality of the 
algorithms  

• Hershberg [1975] shows that global alignment can be computed in O(n+m)-space1


• The key is that when computing V, (in row-major, left to right order) the value only 
depends on the row above, and the current values in the same row to the left 


• But with only that observation you can find the best alignment score in linear 
space, but not the alignment itself

1Myers and Miller [1988] later show that using the same ideas, affine gap alignments can be computed in O(m)-space (m<n)



Hirschberg's Algorithm



Hirschberg's Algorithm

?



Hirschberg's Algorithm



Hirschberg's Algorithm



Hirschberg's Algorithm

FindMid(S[1...n],T[1...n]):

   F = CostOnlyNWForward(S[1...n/2],T[1...m])

   B = CostOnlyNWBackward(S[n/2+1...n],T[1...m]) 
   return  

HirschbergAlign(S[i...j],T[x...y]):

    if i=j then  compute full Needleman-Wunsch and return the alignment

    mid = (i+j)/2

    z = FindMid(S[1...n],T[1...n])

    return HirschbergAlign(S[i...mid],T[x...z]) · HirschbergAlign(S[mid+1...j],T[z+1...y]) 

argmaxj {F[ j] + B[ j]}

Concatenation

O(m)-space, freed after each call

O(n)-space, to store the stack



Hirschberg's Algorithm

FindMid(S[1...n],T[1...n]):

   F = CostOnlyNWForward(S[1...n/2],T[1...m])

   B = CostOnlyNWBackward(S[n/2+1...n],T[1...m]) 
   return  

HirschbergAlign(S[i...j],T[x...y]):

    if i=j then  compute full Needleman-Wunsch and return the alignment

    mid = (i+j)/2

    z = FindMid(S[1...n],T[1...n])

    return HirschbergAlign(S[i...mid],T[x...z]) · HirschbergAlign(S[mid+1...j],T[z+1...y]) 

argmaxj {F[ j] + B[ j]}

O(mn)-time
O(mn)-time
O(1)-time

O(mn)-time for each call

Time(n,m)

O(mn)-time

Time(n/2,z) + Time(n/2,m-z)

O(mn)-time total

Concatenation



Alignment Scores
• In all of the examples we have been given 𝛿, a, b, etc. and using fixed 

values we are able to find the optimal alignment in O(mn)-time


• Since different values of those parameter induce different alignments, how 
do we know which parameter values are best? 


• This is a problem known as inverse parametric alignment (or just 
parametric alignment) where you want to find all possible alignments of 
the two sequences. 


• How many optimal alignments do you think there are? (notice that optimal 
is emphasized)


