Suffix Trees
 CS 4364/5364

Sequence Search Problem

- Given a text T and a pattern P answer the question: does P exist as a substring in T ?
- Example:
- $P=$ "aba", $T=$ "bbabaxababay"
- yes, P occurs in T
- note, that there are multiple occurrences, but the question is binary

Sequence Search Problem

- We know that for $|P|=m \&|T|=n$, can be answered in $O(m+n)$ time
-What if there are k patterns?
- using Boyer-Moore (or others) can be answered in $O(k(m+n)$) time
- What happens when $m=10^{9}$ (i.e. a human genome or an entire textbook)?

Suffix Tree

Does xabxac contain xa?
1234567 xabxac\$

How long does it take to answer that question?

How many instances of xa does xabxac contain?

Where are the instances of $x a$ within xabxac?

How long would it take to construct the tree?

Ukkonen's Algorithm

- Builds a suffix tree in $O(m)$-time
- Uses the idea of "implicit suffix trees" which don't include terminating characters, and iterative extension to build the tree in linear time

Ukkonen's Algorithm
 Concept

123456 xabxac

Three rules for adding suffix $S[i \ldots j+1]$ to the implicit tree up to j

Rule 1 In the current tree $S[i \ldots j]$ ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with $S[j+1]$, do nothing.

How long would it take to run this construction method?

Ukkonen's Algorithm

Concept

a suffix link connects an internal node labeled by some string $x a$ to an internal node labeled by a where x is a single character and a is an arbitrary (possibly empty) string.

Three rules for adding suffix $S[i . . j+1]$ to the implicit tree up to j

Rule 1 In the current tree $S[i . . . j]$ ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with S[j+1], do nothing.

Each newly created node (by Rule 2) will have a suffix link from it by the end of the next extension.

Ukkonen's Algorithm

1234567 xabxacf

a suffix link connects an internal node labeled by some string $x a$ to an internal node labeled by a where x is a single character and a is an arbitrary (possibly empty) string.

Three rules for adding suffix $S[i . . j+1]$ to the implicit tree up to j

Rule 1 In the current tree $S[i . . . j]$ ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with S[j+1], do nothing.

Ukkonen's Algorithm

Concept

Three rules for adding suffix $S[i . . j+1]$ to the implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with S[j+1], do nothing.
node compression is used to save time and space when constructing and using a suffix tree. On each edge store only the start and end indexes rather than substring since
they all come from a single string S.

Ukkonen's Algorithm

- Trick 1: the "skip/count trick"
- when finding a string f in the tree (for which we know the string thats all but the last character exists) we can use the length of the string and the edge labels to speed up search
- at node v in the tree, one must start with $f[1]$ call that edge $e=(v, u)$
- if \mid label $(e)|<|f|-1$ set $v=u, f=f[\mid$ label $(e)|\ldots| f \mid]$, repeat
- if \mid label $(e)|=|f|-1$ extend label(e) by $f| f|\mid$, end (Rule 1)
- otherwise we know f ends somewhere in e and we can apply the appropriate rule (Rule 2 or Rule 3)

Ukkonen's Algorithm

- Trick 2: Rule 3 is a "show stopper"
- stop any extension round once Rule 3 is applied, all further rounds will already be in the tree
- if $S[i . . . j]$ exists, then $S[i+1 \ldots j], S[i+2 \ldots j]$ since they are suffixes of some other prefix
- Trick 3: Once a leaf, always a leaf
- let the edge label for leaves end at a global variable \boldsymbol{e} that will be updated each round
- Rule 1 will always apply to these nodes
- keep a value i_{j} which is the index before the one where trick 2 started to apply, only examine from $i_{j}+1$ on to j

Ukkonen's Algorithm

Three rules for adding suffix $S[i . . j+1]$ to the implicit tree up to j

Rule 1 In the current tree $S[i \ldots j]$ ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with $S[j+1]$, do nothing.

Ukkonen's Algorithm

Three rules for adding suffix $S[i \ldots j+1]$ to the implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with $S[j+1]$, do nothing.

Ukkonen's Algorithm

Three rules for adding suffix $S[i \ldots j+1]$ to the implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with $S[j+1]$, do nothing.

Ukkonen's Algorithm

Three rules for adding suffix $S[i \ldots j+1]$ to the implicit tree up to j

Rule 1 In the current tree $S[i . . . j]$ ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with $S[j+1]$, do nothing.

Ukkonen's Algorithm

Three rules for adding suffix $S[i \ldots j+1]$ to the implicit tree up to j

Rule 1 In the current tree $S[i . . . j]$ ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with $S[j+1]$, do nothing.

Ukkonen's Algorithm

Three rules for adding suffix $S[i \ldots j+1]$ to the implicit tree up to j

Rule 1 In the current tree $S[i \ldots . . j]$ ends at a leaf, append character $S[j+1]$ to the label.

Rule $2 S[i . . . j]$ ends at an internal node or in the middle of a label, and no extension starts with $S[j+1]$, add new leaf.

Rule 3 Some path from $S[i . . . j]$ starts with $S[j+1]$, do nothing.

Ukkonen's Algorithm

- Theorem Using suffix links, and tricks 1, 2, and 3, Ukkonen's algorithm builds an implicit suffix tree in $O(m)$ time (for $|S|=m$)
- Proof sketch
- implicit extensions are constant time per round, so total time is $O(m)$
- j_{i} only ever increases, is bounded by m and is always incremented when an explicit extension is performed (i.e. Rule 2), therefore only m explicit extensions are performed
- walking down to get to an explicit extension is a total of at most $2 m$ because of the sufflix links, the fact you're always starting at the last explicit extension that was made, and the tree depth being $O(m)$

Ukkonen's Algorithm

- Making a true suffix tree is still $O(m)$
- create the implicit suffix tree for $S \$$ (which takes $O(m+1)$ time)
- make a single pass to convert the variable e to a number

Generalized Suffix Trees

$$
\begin{aligned}
& 123456 \\
S_{1} & =\text { xabxa } \\
S_{1} & =\text { babxba }
\end{aligned}
$$

- build the tree for S_{1}
- match S_{2} in the tree until a mismatch is found at $S_{2}[j]$
- restart the Ukkonen algorithm from j (all suffixes of S[1...j-1] are already in the tree)
- repeat for $S_{3}, S_{4}, \ldots, S_{k}$

Longest Common Substring Problem

- Given two sequences S_{1} and S_{2} find the longest common substring between the two.
- That is, find the largest k such that for some locations $i<\left|S_{1}\right|$ and $j<\left|S_{1}\right|$ such that $S_{1}[i \ldots(i+k)]=S_{2}[j \ldots(j+k)]$.
- Example $S_{1}=$ californialives $S_{2}=$ sealiver
- $k=5, i=10, j=3$ (alive)

Longest Common Substring Problem

$$
\begin{aligned}
& S_{1}=\text { nialives } \$ \\
& S_{2}=\text { sealiver } \$
\end{aligned}
$$

Suffix Arrays

- How much space does a suffix tree over an alphabet $|\Sigma|=\sigma$ consume?
- If each internal node contains a σ length array of pointers its $O(m \sigma)$.
- Manber and Myers show that the same running time for algorithms on suffix trees can be achieved while only storing a single array of integers, called a suffix array.

Suffix Arrays

s=mississippi

A suffix array contains the starting position of the suffixes of a string when listed in lexicographic order.

```
11: i
    8: ippi
    5:
    2: ississippi
    1: mississippi
    10: pi
    9:
    7:
    4:
    6:
    3:
    ssissippi
```


Suffix Arrays

$$
\mathrm{s}=\text { mississippi }
$$

Is sip is contained in mississippi?

Suffix Arrays

s = mississippi

Is sip is contained in mississippi?

Suffix Arrays

s = mississippi

Is sip is contained in mississippi?

11: i
8: ippi
5: issippi
2: ississippi
mississippi
10: pi
9:
ppi
sippi
sissippi
ssippi
3:

Binary search!	11:	i
	8 :	ippi
	5:	issippi
	2 :	ississippi
	$1:$	mississippi
	10:	pi
$s[4 . .]=$. ? sip	9:	ppi
	7:	sippi
	4:	sissippi
	6:	ssippi
	$3:$	ssissippi

Suffix Arrays

s = mississippi

Is sip is contained in mississippi?

Suffix Arrays

s = mississippi

Is sip is contained in mississippi?

Suffix Arrays

One more concept:
$\operatorname{lcp}(i, j)$ for positions i and j is the length of the longest common prefix of the suffixes at position i and j in the suffix array
$\operatorname{lcp}(10,11)=3$ (ssi)
$\operatorname{lcp}(8,11)=1(\mathrm{~s})$
The Icp for non-adjacent positions is the minimum of adjacent Icp values between the two positions

$$
\begin{aligned}
& \operatorname{lcp}(8,9)=2 \\
& \operatorname{lcp}(9,10)=1 \\
& \operatorname{lcp}(10,11)=3
\end{aligned}
$$

s = mississippi
11: i 1
8: ippi 1
issippi 4
ississippi 0
mississippi 0
10: pi1
9: ppi 0
sippi 2
sissippi 1
ssippi 3

Suffix Arrays

s = mississippi

Find all occurrences of issi in mississippi.

T lcp with $p=1$	11:	i 1
	8:	ippi 1
	$5:$	issippi 4
	2 :	ississippi 0
ssi	1:	mississippi 0
M	10:	pi 1
	9:	ppi 0
$\operatorname{lcp}(T, M)=0$	7:	sippi 2
	4:	sissippi 1
	$6:$	ssippi 3
B Icp with $\mathrm{p}=0$	3:	ssissippi

Suffix Arrays

s=mississippi

Find all occurrences of issi in mississippi.

B Icp with $\mathrm{p}=0$	10:	pi
	9:	ppi
$\boldsymbol{I c p}(T, M)=1$	7:	sippi
	$4:$	sissippi
	$6:$	ssippi
	3:	ssissippi

Suffix Arrays

$$
\mathrm{s}=\text { mississippi }
$$

Find all occurrences of issi in mississippi.

11:	i
8 :	ippi
$5:$	issippi 4
2 :	ississippi 0
$1:$	mississippi 0
10:	pi 1
9 :	ppi 0
7:	sippi 2
4:	sissippi
$6:$	ssippi 3
$3:$	ssissippi

Suffix Arrays

s = mississippi

Find all occurrences of issi in mississippi.

$11:$	i	$\mathbf{1}$
8:	ippi	$\mathbf{1}$
2:	issippi	$\mathbf{4}$
1ssissippi	$\mathbf{0}$	
10:	mississippi	$\mathbf{0}$
9:	pi	$\mathbf{1}$
7:	pipi	$\mathbf{0}$
4:	sissippi	$\mathbf{2}$
6:	ssippi	$\mathbf{3}$
3:	ssissippi	-

Suffix Arrays

- We will see more about suffix arrays when we get to genome assembly in a few weeks as they are the basis for the Burroughs-Wheeler Transform (or BWT)

