
Suffix Trees
CS 4364/5364

Sequence Search Problem

• Given a text T and a pattern P answer the question: does P exist as a
substring in T?

• Example:

• P = "aba", T = "bbabaxababay"

• yes, P occurs in T

• note, that there are multiple occurrences, but the question is binary

Sequence Search Problem

• We know that for |P|=m & |T|=n, can be answered in O(m+n) time

• What if there are k patterns?

• using Boyer-Moore (or others) can be answered in O(k(m+n)) time

• What happens when m=109 (i.e. a human genome or an entire textbook)?

Suffix Tree

xabxac

x

a

b

c

123456

3

c

6

a

c

5

x
a

b

c

x a x ab c
c

4

1

2

Does xabxac contain xa?

How many instances of xa
does xabxac contain?

Where are the instances of xa
within xabxac?

How long does it take
to answer that question?

How long would it take to
construct the tree?

$

$

$

$

$
$

7 $
$
7

Ukkonen's Algorithm

• Builds a suffix tree in O(m)-time

• Uses the idea of "implicit suffix trees" which don't include terminating
characters, and iterative extension to build the tree in linear time

Ukkonen's Algorithm

x

a

b

c

3

c

6

a

c

5

x
a

b

c

x a x ab c
c

4

1

2

xa xab c
123456

Concept

How long would it take to
run this construction method?

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

Ukkonen's Algorithm

x

a

b

c

3

c

6

a

c

5

x
a

b

c

x a x ab c
c

4

1

2

xa xab c
123456

Concept

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

a suffix link connects an internal node labeled by some
string xa to an internal node labeled by a where x is a single

character and a is an arbitrary (possibly empty) string.

Each newly created node (by Rule 2)
will have a suffix link from it by the

end of the next extension.

Ukkonen's Algorithm

x

a

b

c

3

c

6

a

c

5

x
a

b

c

x a x ab c
c

4

1

2

xa xab c
123456

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

a suffix link connects an internal node labeled by some
string xa to an internal node labeled by a where x is a single

character and a is an arbitrary (possibly empty) string.

f
7 f

f

Ukkonen's Algorithm

x

a

b

c

3

c

6

a

c

5

x
a

b

c

x a x ab c
c

4

1

2

xa xab c
123456

Concept

node compression is used to save time and space when
constructing and using a suffix tree. On each edge store

only the start and end indexes rather than substring since
they all come from a single string S.

(3, 6)

(3, 6)
(3, 6)

(6, 6)

(6, 6)
(6, 6)

(1, 2)

(2, 2)

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

Ukkonen's Algorithm

• Trick 1: the "skip/count trick"

• when finding a string f in the tree (for which we know the string thats all

but the last character exists) we can use the length of the string and the
edge labels to speed up search

• at node v in the tree, one must start with f[1] call that edge e = (v,u)
• if |label(e)| < |f| - 1 set v = u, f = f[|label(e)|...|f|], repeat
• if |label(e)| = |f| - 1 extend label(e) by f[|f|], end (Rule 1)

• otherwise we know f ends somewhere in e and we can apply the

appropriate rule (Rule 2 or Rule 3)

Ukkonen's Algorithm
• Trick 2: Rule 3 is a "show stopper"

• stop any extension round once Rule 3 is applied, all further rounds will

already be in the tree

• if S[i...j] exists, then S[i+1...j], S[i+2...j] since they are suffixes of some

other prefix

• Trick 3: Once a leaf, always a leaf

• let the edge label for leaves end at a global variable e that will be

updated each round

• Rule 1 will always apply to these nodes

• keep a value ij which is the index before the one where trick 2 started to

apply, only examine from ij+1 on to j

Ukkonen's Algorithm

1xa xab c
123456

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

e = 1
ij = 0

(1,e)

ij = 1

i = 1

Ukkonen's Algorithm

1

2

xa xab c
123456

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

e = 2
ij = 1

(1,e)

(2,e)
ij = 2

i = 2

Ukkonen's Algorithm

3

1

2

xa xab c
123456

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

e = 3
ij = 2

(1,e)

(2,e)(3,e)ij = 3

i = 3

Ukkonen's Algorithm

3

1

2

xa ab c
123 56

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

e = 4

(1,e)

(2,e)(3,e)ij = 3

x
4 i = 4

Ukkonen's Algorithm

3

1

2

xa xab c
123456

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

e = 5
ij = 3

(1,e)

(2,e)(3,e)

i = 4

Ukkonen's Algorithm

3

6
5

4

1

2

xa xab c
123456

Three rules for adding suffix S[i...j+1] to the
implicit tree up to j

Rule 1 In the current tree S[i...j] ends at a
leaf, append character S[j+1] to the label.

Rule 2 S[i...j] ends at an internal node or in
the middle of a label, and no extension
starts with S[j+1], add new leaf.

Rule 3 Some path from S[i...j] starts with
S[j+1], do nothing.

e = 6
ij = 3

(1,e)

(2,e)(3,e)

(1,2)

(6,e)

(3,e)

(3,e)

(2,2)

(6,e)(6,e)

i = 4i = 5i = 6

Ukkonen's Algorithm
• Theorem Using suffix links, and tricks 1, 2, and 3, Ukkonen's algorithm

builds an implicit suffix tree in O(m) time (for |S| = m)
• Proof sketch

• implicit extensions are constant time per round, so total time is O(m)

• ji only ever increases, is bounded by m and is always incremented

when an explicit extension is performed (i.e. Rule 2), therefore only m
explicit extensions are performed

• walking down to get to an explicit extension is a total of at most 2m
because of the sufflix links, the fact you're always starting at the last
explicit extension that was made, and the tree depth being O(m)

Ukkonen's Algorithm

• Making a true suffix tree is still O(m)

• create the implicit suffix tree for S$ (which takes O(m+1) time)

• make a single pass to convert the variable e to a number

Generalized Suffix Trees
 123456

S1 = xabxa
S1 = babxba b

x

a

$ b

a

$

$

a

b

x

b

a

$

a

b

x

a

$

$

b

a

$

x a b x a $

b

a
$

$

1,3

2,3

2,5

2,1

1,5
2,6

2,2

1,2

2,4
1,4

1,1

Using Ukkonen's Algorithm

• build the tree for S1
• match S2 in the tree until a mismatch is

found at S2[j]

• restart the Ukkonen algorithm from j (all

suffixes of S[1...j-1] are already in the tree)

• repeat for S3, S4, ... , Sk

Longest Common Substring Problem

• Given two sequences S1 and S2 find the longest common substring
between the two.

• That is, find the largest k such that for some locations i<|S1| and j<|S1|

such that S1[i...(i+k)] = S2[j...(j+k)].

• Example S1 = californialives S2 = sealiver

• k = 5, i = 10, j = 3 (alive)

Longest Common Substring Problem

S1 = nialives$  
S2 = sealiver$

n i a l e s

r

i v $

i
a
l

e
s

i
v

$

a
l

e
s

iv

$

l

e

s

i

v

$

e sv $es v$

e

s
$

s

$

$

e

a
l

e

i
v

$

ra l ei v $
r

$

r
$

r
$

r
$

r

$

r
$

S1

S1

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S2

S2

Suffix Arrays

• How much space does a suffix tree over an alphabet |Σ| = σ consume?

• If each internal node contains a σ length array of pointers its O(m σ).

• Manber and Myers show that the same running time for algorithms on
suffix trees can be achieved while only storing a single array of integers,
called a suffix array.

Suffix Arrays

A suffix array contains the
starting position of the suffixes
of a string when listed in
lexicographic order.

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

Suffix Arrays

Is sip is contained in
mississippi?

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

Binary search!

Suffix Arrays

Is sip is contained in
mississippi?

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

Binary search!

s[10...] =? sip

Suffix Arrays

Is sip is contained in
mississippi?

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

Binary search!

s[4...] =? sip

Suffix Arrays

Is sip is contained in
mississippi?

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

Binary search!

s[9...] =? sip

Suffix Arrays

Is sip is contained in
mississippi?

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

Binary search!

s[7...] =? sip

Suffix Arrays
One more concept:

lcp(i,j) for positions i and j is the length of
the longest common prefix of the suffixes
at position i and j in the suffix array

lcp(10,11) = 3 (ssi)  
lcp(8,11) = 1 (s)

The lcp for non-adjacent positions is the
minimum of adjacent lcp values between
the two positions

lcp(8,9) = 2 
lcp(9,10) = 1 
lcp(10,11) = 3

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

1
1
4
0
0
1
0
2
1
3
-

Suffix Arrays

Find all occurrences of issi
in mississippi.

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

T lcp with p = 1

B lcp with p = 0

M

lcp(T,M) = 0

1
1
4
0
0
1
0
2
1
3
-

Suffix Arrays

Find all occurrences of issi
in mississippi.

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

T lcp with p = 1

B lcp with p = 0

M

lcp(T,M) = 1

1
1
4
0
0
1
0
2
1
3
-

Suffix Arrays

Find all occurrences of issi
in mississippi.

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

1
1
4
0
0
1
0
2
1
3
-

T lcp with p = 4

B lcp with p = 0

Suffix Arrays

Find all occurrences of issi
in mississippi.

s = mississippi

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

1
1
4
0
0
1
0
2
1
3
-

T lcp with p = 4

B lcp with p = 4

Suffix Arrays

• We will see more about suffix arrays when we get to genome assembly in
a few weeks as they are the basis for the Burroughs-Wheeler Transform
(or BWT)

