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Sequence Search Problem

• Given a text T and a pattern P answer the question: does P exist as a 
substring in T?


• Example: 

• P = "aba", T = "bbabaxababay"

• yes, P occurs in T

• note, that there are multiple occurrences, but the question is binary



Sequence Search Problem

• We know that for |P|=m & |T|=n, can be answered in O(m+n) time


• What if there are k patterns?

• using Boyer-Moore (or others) can be answered in O(k(m+n)) time


• What happens when m=109 (i.e. a human genome or an entire textbook)?



Suffix Tree
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Ukkonen's Algorithm

• Builds a suffix tree in O(m)-time


• Uses the idea of "implicit suffix trees" which don't include terminating 
characters, and iterative extension to build the tree in linear time



Ukkonen's Algorithm
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Concept

How long would it take to  
run this construction method?

Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.
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Concept

Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.

a suffix link connects an internal node labeled by some 
string xa to an internal node labeled by a where x is a single 

character and a is an arbitrary (possibly empty) string.

Each newly created node (by Rule 2) 
will have a suffix link from it by the 

end of the next extension.
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.

a suffix link connects an internal node labeled by some 
string xa to an internal node labeled by a where x is a single 

character and a is an arbitrary (possibly empty) string.
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Concept

node compression is used to save time and space when 
constructing and using a suffix tree. On each edge store 

only the start and end indexes rather than substring since 
they all come from a single string S.
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.



Ukkonen's Algorithm

• Trick 1: the "skip/count trick"

• when finding a string f in the tree (for which we know the string thats all 

but the last character exists) we can use the length of the string and the 
edge labels to speed up search


• at node v in the tree, one must start with f[1] call that edge e = (v,u) 
• if |label(e)| < |f| - 1 set v = u, f = f[|label(e)|...|f|], repeat 
• if |label(e)| = |f| - 1 extend label(e) by f[|f|], end (Rule 1)

• otherwise we know f ends somewhere in e and we can apply the 

appropriate rule (Rule 2 or Rule 3)



Ukkonen's Algorithm
• Trick 2: Rule 3 is a "show stopper"

• stop any extension round once Rule 3 is applied, all further rounds will 

already be in the tree

• if S[i...j] exists, then S[i+1...j], S[i+2...j] since they are suffixes of some 

other prefix


• Trick 3: Once a leaf, always a leaf

• let the edge label for leaves end at a global variable e that will be 

updated each round

• Rule 1 will always apply to these nodes

• keep a value ij which is the index before the one where trick 2 started to 

apply, only examine from ij+1 on to j



Ukkonen's Algorithm
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.

e = 1
ij = 0

(1,e)

ij = 1

i = 1
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.

e = 2
ij = 1

(1,e)

(2,e)
ij = 2

i = 2



Ukkonen's Algorithm
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.

e = 3
ij = 2

(1,e)

(2,e)(3,e)ij = 3

i = 3



Ukkonen's Algorithm
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.

e = 4

(1,e)

(2,e)(3,e)ij = 3

x
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Ukkonen's Algorithm
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.

e = 5
ij = 3

(1,e)

(2,e)(3,e)

i = 4



Ukkonen's Algorithm
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Three rules for adding suffix S[i...j+1] to the 
implicit tree up to j


Rule 1 In the current tree S[i...j] ends at a 
leaf, append character S[j+1] to the label.


Rule 2 S[i...j] ends at an internal node or in 
the middle of a label, and no extension 
starts with S[j+1], add new leaf.


Rule 3 Some path from S[i...j] starts with 
S[j+1], do nothing.
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Ukkonen's Algorithm
• Theorem Using suffix links, and tricks 1, 2, and 3, Ukkonen's algorithm 

builds an implicit suffix tree in O(m) time (for |S| = m) 
• Proof sketch  

• implicit extensions are constant time per round, so total time is O(m)

• ji only ever increases, is bounded by m and is always incremented 

when an explicit extension is performed (i.e. Rule 2), therefore only m 
explicit extensions are performed


• walking down to get to an explicit extension is a total of at most 2m 
because of the sufflix links, the fact you're always starting at the last 
explicit extension that was made, and the tree depth being O(m)



Ukkonen's Algorithm

• Making a true suffix tree is still O(m)

• create the implicit suffix tree for S$ (which takes O(m+1) time)

• make a single pass to convert the variable e to a number



Generalized Suffix Trees
      123456 
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Using Ukkonen's Algorithm 

• build the tree for S1 
• match S2 in the tree until a mismatch is 

found at S2[j]

• restart the Ukkonen algorithm from j (all 

suffixes of S[1...j-1] are already in the tree)

• repeat for S3, S4, ... , Sk



Longest Common Substring Problem

• Given two sequences S1 and S2 find the longest common substring 
between the two. 

• That is, find the largest k such that for some locations i<|S1| and j<|S1| 

such that S1[i...(i+k)] = S2[j...(j+k)]. 


• Example S1 = californialives S2 = sealiver 

• k = 5, i = 10, j = 3 (alive)



Longest Common Substring Problem

S1 = nialives$  
S2 = sealiver$

n i a l e s

r

i v $

i
a
l

e
s

i
v

$

a
l

e
s

iv

$

l

e

s

i

v

$

e sv $es v$

e

s
$

s

$

$

e

a
l

e

i
v

$

ra l ei v $
r

$

r
$

r
$

r
$

r

$

r
$

S1

S1

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S2

S2



Suffix Arrays

• How much space does a suffix tree over an alphabet |Σ| = σ consume? 

• If each internal node contains a σ length array of pointers its O(m σ). 

• Manber and Myers show that the same running time for algorithms on 
suffix trees can be achieved while only storing a single array of integers, 
called a suffix array. 



Suffix Arrays

A suffix array contains the 
starting position of the suffixes 
of a string when listed in 
lexicographic order. 

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi



Suffix Arrays

Is sip is contained in 
mississippi?

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi

Binary search!



Suffix Arrays

Is sip is contained in 
mississippi?

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi

Binary search!

s[10...] =? sip



Suffix Arrays

Is sip is contained in 
mississippi?

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi

Binary search!

s[4...] =? sip



Suffix Arrays

Is sip is contained in 
mississippi?

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi

Binary search!

s[9...] =? sip



Suffix Arrays

Is sip is contained in 
mississippi?

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi

Binary search!

s[7...] =? sip



Suffix Arrays
One more concept:


lcp(i,j) for positions i and j is the length of 
the longest common prefix of the suffixes 
at position i and j in the suffix array


lcp(10,11) = 3 (ssi)  
lcp(8,11)   = 1 (s)

The lcp for non-adjacent positions is the 
minimum of adjacent lcp values between 
the two positions


lcp(8,9) = 2 
lcp(9,10) = 1 
lcp(10,11) = 3

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi
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Suffix Arrays

Find all occurrences of issi 
in mississippi.

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi

  1:  mississippi

10:  pi

  9:  ppi

  7:  sippi

  4:  sissippi

  6:  ssippi

  3:  ssissippi

T lcp with p = 1

B lcp with p = 0

M

lcp(T,M) = 0
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0 
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2 
1 
3 
-



Suffix Arrays

Find all occurrences of issi 
in mississippi.

s = mississippi


11:  i

  8:  ippi
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  2:  ississippi
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  9:  ppi
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M

lcp(T,M) = 1
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Suffix Arrays

Find all occurrences of issi 
in mississippi.

s = mississippi


11:  i

  8:  ippi

  5:  issippi
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  4:  sissippi

  6:  ssippi

  3:  ssissippi
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T lcp with p = 4

B lcp with p = 0



Suffix Arrays

Find all occurrences of issi 
in mississippi.

s = mississippi


11:  i

  8:  ippi

  5:  issippi

  2:  ississippi
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T lcp with p = 4

B lcp with p = 4



Suffix Arrays

• We will see more about suffix arrays when we get to genome assembly in 
a few weeks as they are the basis for the Burroughs-Wheeler Transform 
(or BWT) 


