Longest Common Subsequence (and an ILP)

Asubsequence

For a string S a **subsequence** is a subset of characters from the string in the same relative order.

Formally: a subsequence is specified by a set of indices $i_1 < i_2 < ... < i_k$, such that $k \le m$. The subsequence is then $S[i_1] \cdot S[i_2] \cdot S[i_3] \cdot ... \cdot S[i_k]$.

Given

• two strings S and T

Find

- •the subsequences $\hat{S} = \hat{T}$
- of maximum length

Given

• two strings S and T

Find

- •the subsequences $\hat{S} = \hat{T}$
- of maximum length

S = ATTCGATACAGTG

T = TATCTGAGGTGA

Given

• two strings S and T

Find

- the subsequences $\hat{S} = \hat{T}$
- of maximum length

S = ATTCGATACAGTGT = TATCTGAGGTGA

ATTATG

Given

• two strings S and T

Find

- •the subsequences $\hat{S} = \hat{T}$
- of maximum length

S = ATTCGATACAGTG

T = TATCTGAGGTGA

ATTATG

Given

• two strings S and T

Find

- the subsequences $\hat{S} = \hat{T}$
- of maximum length

S = ATTCGATACAGTGT = TATCTGAGGTGA

ATTATG

ATTGATG

A Dynamic Program

L[0][j] = L[i][0] = 0 $L[i][j] = \max \begin{cases} L[i-1][j-1] + 1, & \text{if } S[i] = T[j] \\ L[i-1][j] \\ L[i][j-1] \end{cases}$

A Dynamic Program

L[0][j] = L[i][0] = 0 $L[i][j] = \max \begin{cases} L[i-1][j-1] + 1, & \text{if } S[i] = T[j] \\ L[i-1][j] \\ L[i][j-1] \end{cases}$

What about as an ILP?

maximize $\sum P(i,j)$ $1 \le i \le n \ 1 \le j \le m$

subject to $\sum P(i,j) \le 1$ $1 \le j \le m$ $\sum P(i,j) \le 1$ $1 \le i \le n$

 $P(i,j) + P(i',j') \le 1$

 $P(i, j) \in 1, 0$

 $P(i,j) \le 0$

An ILP

 $\forall i$ $\forall j$ i < i' & j' < j $\forall i, j$

 $\forall i, j : S[i] \neq T[j]$