Longest Common Subsequence (and an ILP)

A subsequence

For a string S a subsequence is a subset of characters from the string in the same relative order.

Formally: a subsequence is specified by a set of indices $i_{1}<i_{2}<\ldots<i_{k}$, such that $k \leq m$. The subsequence is then $S[i] \cdot S[i z] \cdot S[i]] \cdot \ldots \cdot S[i k]$.

The LCS Problem

Given

- two strings S and T

Find
-the subsequences $\hat{S}=\hat{T}$

- of maximum length

The LCS Problem

Given

$$
S=A T T C G A T A C A G T G
$$

-two strings S and T

Find

$T=T A T C T G A G G T G A$

- the subsequences $\hat{S}=\hat{T}$
- of maximum length

The LCS Problem

Given

- two strings S and T

Find
-the subsequences $\hat{S}=\hat{T}$

- of maximum length

ATTATG

The LCS Problem

Given

- two strings S and T

Find

$$
\begin{aligned}
& S=A T T C G A T A C A G T G \\
& T=T A T C T G A G G T G A
\end{aligned}
$$

-the subsequences $\hat{S}=\hat{T}$

- of maximum length

The LCS Problem

Given

- two strings S and T

Find
-the subsequences $\hat{S}=\hat{T}$

- of maximum length

ATTATG
ATTGATG

A Dynamic Program

$\mathrm{L}[0][\mathrm{j}]=\mathrm{L}[\mathrm{i}][0]=0$

$$
L[i][j]=\max \left\{\begin{array}{l}
L[i-1][j-1]+1, \quad \text { if } S[i]==T[j] \\
L[i-1][j] \\
L[i][j-1]
\end{array}\right.
$$

A Dynamic Program

$$
\mathrm{L}[0][\mathrm{j}]=\mathrm{L}[\mathrm{i}][0]=0
$$

$$
L[i][j]=\max \left\{\begin{array}{l}
L[i-1][j-1]+1, \quad \text { if } S[i]==T[j] \\
L[i-1][j] \\
L[i][j-1]
\end{array}\right.
$$

An ILP

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{1 \leq i \leq n} \sum_{1 \leq j \leq m} P(i, j) \\
\text { subject to } & \\
\sum_{1 \leq j \leq m} P(i, j) \leq 1 & \forall i \\
\sum_{1 \leq i \leq n} P(i, j) \leq 1 & \forall j \\
P(i, j)+P\left(i^{\prime}, j^{\prime}\right) \leq 1 & i<i^{\prime} \& j^{\prime}<j \\
P(i, j) \in 1,0 & \forall i, j \\
P(i, j) \leq 0 & \forall i, j: S[i] \neq T[j]
\end{array}
$$

