Multiple Sequence Alignment

From Chapter 6 of the Sung book

Multiple Sequence Alignment Problem

Given
* A set of sequences s1,Sy,...,S« (of length n)
* An objective function

Find:
*an ¢ by k matrix (£=n)
e where row / contains the characters from sequence s; in order with inserted gap characters
e that is optimal under the objective function.

Input Output
AGTPNGNP A-GT-PNGNP
AGPGNP > A-G--P-GNP
AGTTPNGNP A-GTTPNGNP
CGTPNP -CGT-PN--P
ACGTUNGNP ACGT-UNGNP

Multiple Sequence Alignment

Whats the objective function:
* most popular -- Sum-of-Pairs Objective:

e given some scoring function for a pairwise alignment PairScore(s1',s2')
the score of the multiple alignment is:

SPScore({sy, 8y, ...,8.}) 1= Z PairScore(s;, s;)

1<i<j<k

SPScore({s(,8y,...,58.}) 1= Z PairScore(s;, s;)

1<i<j<k
PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

PairScore(sy, s,) + PairScore(sy, s3) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s;) + PairScore(s;, s;)

S't A—-GT-PNGNP
S's A-G--P-GNP
S's A—-GTTPNCNP
S'y =CGT=PN-=P

SPScore({s), 8y, ...,58,.}) := Z PairScore(s;, s;)

1<i<j<k
PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

PairScore(sy, s,) + PairScore(sy, s;) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s,) + PairScore(s;, s;)

40

s't A GT PNGNP
S'> A G- P-GNP PairScore(sy, s,) = 10 X

SPScore({s), 8y, ...,58,.}) := Z PairScore(s;, s;)
1<i<j<k

PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

PairScore(sy, s,) + PairScore(sy, s;) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s,) + PairScore(s;, s;)

40 62

s't A GT-PNGNP
PairScore(sy, s3) = 10 X

S'3 A GTTPNCNP

SPScore({s), 8y, ...,58,.}) := Z PairScore(s;, s;)

1<i<j<k
PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

PairScore(sy, s,) + PairScore(sy, s;) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s,) + PairScore(s;, s;)

40 62 34

S't A-GT PNGNP
PairScore(sy, s;) = 10 X

s'y —CGT PN--P

SPScore({s), 8y, ...,58,.}) := Z PairScore(s;, s;)

1<i<j<k
PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

PairScore(sy, s,) + PairScore(sy, s;) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s,) + PairScore(s;, s;)

40 62 34 36

S'2 A G=-=-P-GNP PairScore(s,, s;) = 10 X
S'3 A GTTPNCNP

SPScore({s), 8y, ...,58,.}) := Z PairScore(s;, s;)

1<i<j<k
PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

PairScore(sy, s,) + PairScore(sy, s;) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s,) + PairScore(s;, s;)
40 62 34 36 4

S'o A-G- P-GNP PairScore(s,, s;) = 10 X

s'y —CGT PN--P

SPScore({s), 8y, ...,58,.}) := Z PairScore(s;, s;)

1<i<j<k
PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

PairScore(sy, s,) + PairScore(sy, s;) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s,) + PairScore(s;, s;)
40 62 34 36 4 29

PairScore(ss, s;,) = 10 X
S's A-GTTPNCNP
S'4 -CGT-PN--P

SPScore({s(,8y,...,58.}) 1= Z PairScore(s;, s;)

PairScore(sy, s,) + PairScore(sy, s3) + PairScore(sy, s;) + PairScore(s,, s3) + PairScore(s,, s;) + PairScore(s;, s;)

40

S't A—-GT-PNGNP
S's A-G--P-GNP
S's A—-GTTPNCNP
S'y =CGT=PN-=P

1<i<j<k

PairScore(s;, s;) := 10mt —3ms — 1id — 4gp

62

34

36

4

29

= 205

Finding an optimal MSA

Can we find an optimal multiple sequence alignment?

*yes! we can use the same dynamic programming methods we had for pairwise
alignment

*assume there are only 3 sequences, then the recursion is the following:
VIi—1,)—1Lk—=1] +0o(sli], s;[J]) + o(s,1j]1, szlk]) + o(sli], s;1k])
VIi—1,j — 1,k] +o(s1], s;[j]) + o(s,1j]," —") + 5(81[1] ")
Vii—1,j,k—1] +o(s1[i]," =") + o(s,1 /1, s3[k]) +
VIi,j, k] = max { V[i,j— 1,k —1] +0(" =", s,[J]) + o(s,[J], 851k

VIi — 1,j, k] +25(s,[i]," ")
VIi,j — 1.K] +20(s,[71," =)
VIi,j k—1] +25(s5[k]," =")

What happens with 4 sequences? How many clauses are in the max? How big is

Finding an optimal MSA

Kececioglu (1993)" showed that the problem of finding multiple sequence
alignments under any standard formulation is NP-Hard!

"This was somewhat concurrent with Wang and Jiang (1994) both for constant gap costs, but later work
by Kececioglu and Sarrett showed that this is also true for linear (affine) gap costs.

The Center Star Method

S. = arg min 2 D(S,,

1<j<k

The final step is to build an alignment so that all of
the alignments between S¢ and S; are satisfied.

The Center Star Method

S.: CCTGCTGCAG
S,: GATGTGCCG
S,: GATGTGCAG
S,: CCGCTAGCAG
S.: CCTGTAGG

mismatch and indel penalties = 1

The Center Star Method

Assume all sequences are length n
e computing all of the pairwise scores is O(k?n?)-time (O(n?) each)
finding Sc takes O(k2)-time
finding the pairwise alignments takes O(kn2)-time
e inserting additional gaps for each sequence takes O(k2n)-time.

The Center Star Method

Y dpGz Y DS

1<i<j<k 1<i<j<k

How much worse than the optimal alignment is the multiple
alignment produced using the center star method?

Assume the distances (alignment scores) satisfy the triangle
inequality:
* given an MSA M, let du(X,Y) be the alignment score for
the induced pairwise alignment between X and Y in M. i
* the triangle inequality says: du(X,Y) < du(X,Z) + du(Z,Y) 1<§<de(i’j) - Elékléde(i’j)

Let M be the alignment computed by the center star method
and M™ be the optimal alignment.

Zl§i<j§k A1,)

Zl§i<j§k dyi J)

Progressive Alignment

Similar to center star in that we use pairwise alignments to help build
multiple alignments.

Introduced by Feng and Doolittle in 1987.

Basic idea:

e compute pairwise alignment scores for each pair of sequences

e generate a guide tree which ensures similar sequences are near to each
other

e align sequences (or groups) one-by-one from the leaves of the tree

Progressive Alignment

ATTG

"Progressive alignment from consensus sequences"

ATTG

0.2

[from Balcan, et al. 2019, arXiv:1908.02894]

ClustalW

Most used multiple sequence alignment tool, available in many web-based
repositories.

Originally published by Higgins and Sharp (1987) and made widely available
by Thompson, Higgins, and Gibson (1994).

ClustalW

Algorithm
. Calculate the <2> pairwise alignments.
« Compute the pairwise distance between sequences as 1-§ where x IS the

number of gap characters, and y is the number of matches.

e Use the neighbor-joining method to create the guide tree (we will talk
about the details of this later).

*From the leaves compute the alignment at each internal node

ecach alignment will be between either: (i) two sequences, (ii) two partial
alignment, or (i) a sequence and a partial alignment.

How do you align two alignments?

ClustalW
Profile-to-profile alignment:

for an individual column define
PSP (Alil, Ajlj]) =2) gigld(x.)
X,yEX
*here gixis the count of xs in column i/ of As (similarly for giy)
*then we can find the best (hon-affine gap) global alignment using the following recurrence:

Vi—1y—1)+ PSP(Ali], Ayl j])
V(i,j) = max { V(i — 1))+ PSP(A,li], =)
V(i,j— 1)+ PSP(—,A[j])

Computing the g values can be done in a total of O(tkins) for A1, and O(kzny) for As.
* Then computing table V takes O(ninz)-time to compute.
* The total running time is then O(kin1+kan2o+nins) € O(kn+n2).

ClustalW

Align
PPGVKSEDCAS
PATGVKEDCAS
PPDGKSED--S

GATGKDCCS
GATGKDCAS

=
e
o
=
O

v w
O <
O O
A A
MM
O O
H H
S
O O

A A A U M 01 BB A |1 w0
A & H O p M H A O € 0

A A O O M 1 B A O € 0

ClustalW

Algorithm
O(k2n?) +Calculate the <2> pairwise alignments.
0O(k?2) «Compute the pairwise distance between sequences as 1-§ where x IS the

number of gap characters, and y is the number of matches.

O(k3) «Use the neighbor-joining method to create the guide tree (we will talk
about the details of this later).

*From the leaves compute the alignment at each internal node

O(k2n+kn?)
ecach alignment will be between either: (i) two sequences, (ii) two partial
alignment, or (i) a sequence and a partial alignment. 0O(kn+n2)

O(k2n2 + k2 + k3 + k2n + kn2) < O(k2n? + k3)

Issues with progressive alignment

"Once a gap, always a gap"
* Progressive alignment does not realigh sequences, so once a gap is
iIntroduced at a certain position, it cannot be reconsidered.

* This means the order things are aligned can influence the alignment.

lterative Methods

To overcome the issues with progressive alignment, some methods first

create an initial multiple alignment, then continually break apart then re-align
subsets of sequences to improve the alignment.

Popular examples are MAFFT (Katoh, 2002) and MUSCLE (Edgar, 2004).

MUSCLE
(MUltiple Sequence Comparison by Log-Expectation)

The Log-Expectation (LE) score replaces the PSP score in ClustalW.

Does not ighore spaces in the two profiles when aligning.

LEA[i], A1) = (1 = f5)(1 = f)log) fif]

X,yEX
* here fig Is the frequency of gaps in column i of A; (similarly for fg).
o fiyand fiy are the normalized frequency of other characters:

i 8,
/i =: .

(ZX’EZ gﬁjc.’)

MUSCLE
(MUltiple Sequence Comparison by Log-Expectation)

Algorithm:
1. draft progressive alignment -- similar to ClustalW but with

* LE score for aligning profiles,
* a more efficient tree building algorithm, and
* a more efficient pairwise comparison (using k-mer counting).

2. improved progressive alignment -- using the alignment from (1)
. redefine the pairwise distances using the Kimura distance —ln(l —D—%z)

* D is the fraction of matches.
e re-align.
3. refinement -- deleting an edge in the guide tree creates two sub-groups of sequences with

induced sub-alignments.
e Extract those two sub-alignments and realign them.

* Only keep the new alignment if the SP score is increased.
* Stop when SP has not improved: in a predefined number of iterations or when all edges are

visited.

ClustalW
ClustalQ
MAFFT
MUSCLE
PREFAB
Opal
Kalign
T-Coffee

S0 many aligners!!

 MSA

e Dialign

« MACAW

« MUMMALS
* Prank

* Probalign

* Probcons
 POA

SATé
PASTA
MSAProbs

M-Coffee (meta-
alignment)

FastR (RNA)
PMFastR (RNA)

