
Hashing and Sketching

Comparison can be slow

We know calculating local alignments is O(n2)

• in the case of read overlapping if there are say 106 reads

• if reads are 102 bases each, thats 1010 computations!

Even hamming distance (O(n)) may be too slow.

Remember, finding overlaps is just step 1 of assembly!

Jaccard Similarity
Measures the similarity of two sets of items A and B
as:

Used also used in computer vision, sometimes
called the "Intersection over Union" (IoU) metric

J(A, B) =
A ∩ B

A ∪ B
=

A ∩ B

|A | + |B | − A ∩ B J(A, B) =

How would we use
Jaccard for sequences?

Images courtesy of Wikimedia Commons.

Jaccard Similarity
In sequence analysis we construct a sets of k-mers for each of the strings
being compared

Min-Hash Sketch
Calculating the union and intersection of a set of anything (in particular k-
mers) can be time consuming (O(n) time)

Can we calculate it faster?

Consider the following scenario:

•given a hash function on k-mers h: Σk→Z+

•and the sets of k-mers for two string A and B,
•What is the probability that ?

Turns out that

minc∈A {h(c)} = minc∈B {h(c)}

Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Min-Hash Sketch

Why is ?Prh [minc∈A {h(c)} = minc∈B {h(c)}] = J(A, B)

Think of h as applying a randomized ordering on the k-mers.

If the minimum k-mer from the union is in the intersection,  
it will be minimum for both A and B.

How many minimum k-mers from the union can we choose?

What fraction of those are in the intersection?

Min-Hash Sketch

As you increase the number of hashes,
you will get closer to the estimate of
the real jaccard value

Finding that many independent hashes
may be hard

Number of Hashes

(E
st

im
at

ed
) J

ac
ca

rd

Min Hash Sketch with 1 Hash

The idea is that you choose the minimum n
elements according to the hash h, and compute
jaccard on these subsets

This subset of k-mers is called a "sketch"

Sometimes called "MinHash bottom sketching"

Image credit: Ondov, et al. (2016) Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology.

Minimizer Schemes

Another way to sketch a sequence is though the use of minimizer schemes

Here a set of k-mers for a sequence are selected by finding the minimum  
k-mer in overlapping windows

Minimizer Schemes

Roberts, et al. (2004) introduced
minimizer schemes as a way to
decrease the time needed for
sequence overlap computation

10

Minimizer Schemes

Roberts, et al. (2004) introduced
minimizer schemes as a way to
decrease the time needed for
sequence overlap computation

11

Minimizer Schemes

Roberts, et al. (2004) introduced
minimizer schemes as a way to
decrease the time needed for
sequence overlap computation

12

Minimizer Schemes

Roberts, et al. (2004) introduced
minimizer schemes as a way to
decrease the time needed for
sequence overlap computation

13

Minimizer Schemes

Roberts, et al. (2004) introduced
minimizer schemes as a way to
decrease the time needed for
sequence overlap computation

O(n2) alignments!

14

Minimizer Schemes

Roberts, et al. (2004) introduced
minimizer schemes as a way to
decrease the time needed for
sequence overlap computation

Only compare within bins

15

Minimizer Schemes

• Minimizer schemes have two special properties:

• two sequences with a long exact match must select the same k-mers

• there are no large gap between selected k-mers

• Use in k-mer counting, de Brujin graph construction, data structure
sparsification, etc.

16

Minimizer Schemes

o

k-mer

minimizer

minimizer 
location window

S

For a windows of w consecutive k-mers from a
sequence S, a minimizer scheme selects the
minimum according to an ordering o as a
representative

17

Minimizer Schemes

o
For a windows of w consecutive k-mers from a
sequence S, a minimizer scheme selects the
minimum according to an ordering o as a
representative

18

Minimizer Schemes

o
For a windows of w consecutive k-mers from a
sequence S, a minimizer scheme selects the
minimum according to an ordering o as a
representative

19

Minimizer Schemes

o

• Changing the ordering used can greatly
impact the number of unique minimizers

• Can we find an order that minimizes the
number of minimizer locations

20

Only some k-mers are used a minimizers

Universal k-mer Set

A universal k-mer set Uk,w ⊆ Σk is a set of k-mers such that any window of w
consecutive k-mers must contain at least one element from the set

21

Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• A universal k-mer set induces a family of
compatible orderings

• Orderings based on universal sets have better
performance then lexicographic or random
orders (Marçais, et al., 2017)

• Current methods cannot construct sets for
values of k and w used in practice

22

Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• A universal k-mer set induces a family of
compatible orderings

• Orderings based on universal sets have better
performance then lexicographic or random
orders (Marçais, et al., 2017)

• Current methods cannot construct sets for
values of k and w used in practice

23

Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• Set Size

• Fraction of all k-mers in the universal set

• Density

• Normalized count of minimizer locations in S

• Sparsity

• Normalized count of windows in S with only

one umer

24

Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• Set Size

• Fraction of all k-mers in the universal set

• Density

• Normalized count of minimizer locations in S

• Sparsity

• Normalized count of windows in S with only

one umer (universal k-mer)

singleton
window

25

Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• Set Size

• Fraction of all k-mers in the universal set

• Expected Density

• Normalized count of minimizer locations in BL

• Expected Sparsity

• Normalized count of windows in BL with only

one umer (universal k-mer)

singleton
window

BL is the de Brujin sequence of order L, it contains each
window exactly once

26

Universal k-mer Set and Minimizer Ordering

o

umerUk,w

• A universal k-mer set induces a family of
compatible orderings

• Orderings based on universal sets have better
performance then lexicographic or random
orders (Marçais, et al., 2017)

• Current methods cannot construct sets for
values of k and w used in practice

27

Can we construct universal k-mer sets that are
practical for use in minimizer schemes?

Detour: De Brujin graphs

though we call them De Brujin graphs they were independently described by
Nicolaas Govert de Bruijn and Irving John Good in 1946

they are used to encode sequence information as paths in a graph

Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

https://en.wikipedia.org/wiki/Nicolaas_Govert_de_Bruijn

De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

k=1 k=2 k=3

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

k=2
Each node has σ outgoing edges,  

and σ incoming edges

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

k=2
Each node has σ outgoing edges,  

and σ incoming edges

Any string over the alphabet  
can be encoded as a path on the DBG

Example: 1011000

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

the de Brujin of order k is a line graph of the debrujin graph of order k-1

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it
contains all k-mers exactly once

00110

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it
contains all k-mers exactly once

•or the Eulerian path of the graph of k-1

0001011100

Image courtesy commons.wikimedia.org/wiki/File:Debruijngraph.gif

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

a decycling set of edges a de Brujin graph is a set of nodes that when
removed leave a DAG

•this set of k-mers is guaranteed to exist in all long enough sequences

Image courtesy of Guillaume Marçais

Can you find a length 6 binary sequence,
which does not intersect one of the red k-mers?

Other properties for DBGs we won't use for
assembly

a decycling set of edges a de Brujin graph is a set of nodes that when
removed leave a DAG

•this set of k-mers is guaranteed to exist in all long enough sequences

Can you find a length 6 binary sequence,
which does not intersect one of the red k-mers?

Image courtesy of Guillaume Marçais

DBG for DNA
What we have seen in the previous slides was the DBG for Σ = {1,0}

For DNA (Σ = {A,C,T,G}) the graph is a little more complicated

AA AC

AT

AG

CA CC

CT

CG

TA TC

TT

TG

GA GCGT

GG

Remember, the 4 DNA
characters can be

represented by 2-bit
binary numbers.

Universal k-mer Set Extension

The naïve extension Uk,w · Σ of a universal set Uk,w is universal

The sparsity of Uk,w·Σ is equal to that of Uk,w

The density of a compatible order for Uk,w·Σ is less than or equal to  
the density of a compatible order for Uk,w if the orderings are compatible with 

 each other

create |Σ| new(k+1)-mers from each k-mer 
by concatenating each character from Σ to the end

38

Example:
ACCTG ∈ Uk,w →

{ACCTGA, ACCTGC, ACCTGT, ACCTGG} ∈ Uk,w · Σ

Universal k-mer Set Extension

The naïve extension Uk,w · Σ of a universal set Uk,w is universal

The sparsity of Uk,w · Σ is equal to that of Uk,w

The density of a compatible order for Uk,w · Σ is less than or equal to  
the density of a compatible order for Uk,w  

if the orderings are compatible with each other

39

Mu and reMuval

o

umerUk,w

• the minimum co-occurance count for u∈U

• For any u∈U such that Mu>1, U\u is universal

• The universal set after the removal of u has:

• smaller size, and

• higher (possibly equal) sparsity

Mu = min
ω∈Wu

|ω ∪ U |

Mu=2

Mu=2Mu=1

Mu=3Mu=2

40

Optimal reMuval
• Not all umers with Mu>1 can be removed from U,

• Integer linear programming (ILP) is used to find the minimum number of k-mers to
retain

• The ILP is deceptively simple

∑
u∈U

yu

∑
u ∈ ω∩U

yu ≥ 1 ∀ω ∈ W

minimize

subject to

yu ∈ {0,1} ∀u ∈ U

All of the umer co-occurance
information is encoded in W

41

Practical Universal k-mer Set Construction

Uk’,w Ûj,w

j=k’+1

j=j+1

Uj,w

no

yes
Uk,w

DOCKS

(Orenstein, et al., 2017) Naïve Extension reMuval j==k?

42

Local vs. Forward vs. Minimizer Schemes
Assume we're going to rewrite it F(M)→m where M is the ordered set of k-mers
from the window, and m is the returned k-mer.

What if we relax the rules a bit:

•Minimizer Schemes -- choose the

•Forward Schemes -- choose any m such that for all M' that can proceed
M the choice is at the same position or later

•Local Schemes -- choose any m

m = arg min
m′￼∈M

(O(m′￼))

Forward Local

Minimizer ⊂ Forward ⊂ Local

Problems with Jaccard

