Hashing and Sketching

Comparison can be slow

We know calculating local alignments is O(n²)
in the case of read overlapping if there are say 10⁶ reads
if reads are 10² bases each, thats 10¹⁰ computations!

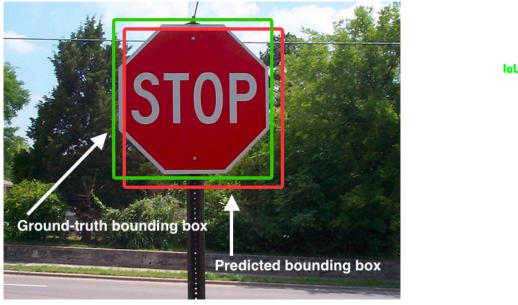
Even hamming distance (O(n)) may be too slow.

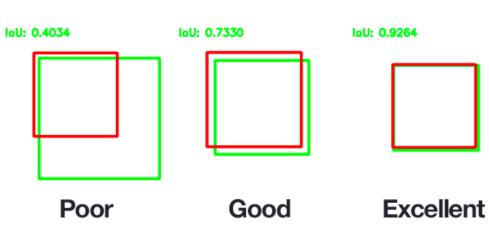
Remember, finding overlaps is just step 1 of assembly!

Measures the similarity of two sets of items A and B as:

$$J(A,B) = \frac{\left|A \cap B\right|}{\left|A \cup B\right|} = \frac{\left|A \cap B\right|}{\left|A\right| + \left|B\right| - \left|A \cap B\right|}$$

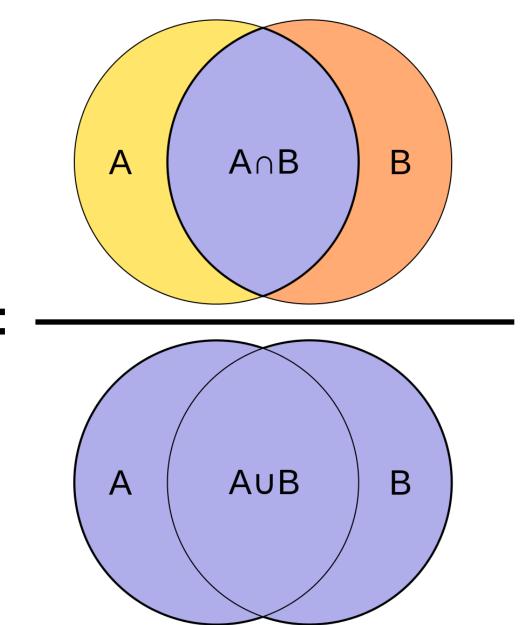
Used also used in computer vision, sometimes called the "Intersection over Union" (IoU) metric





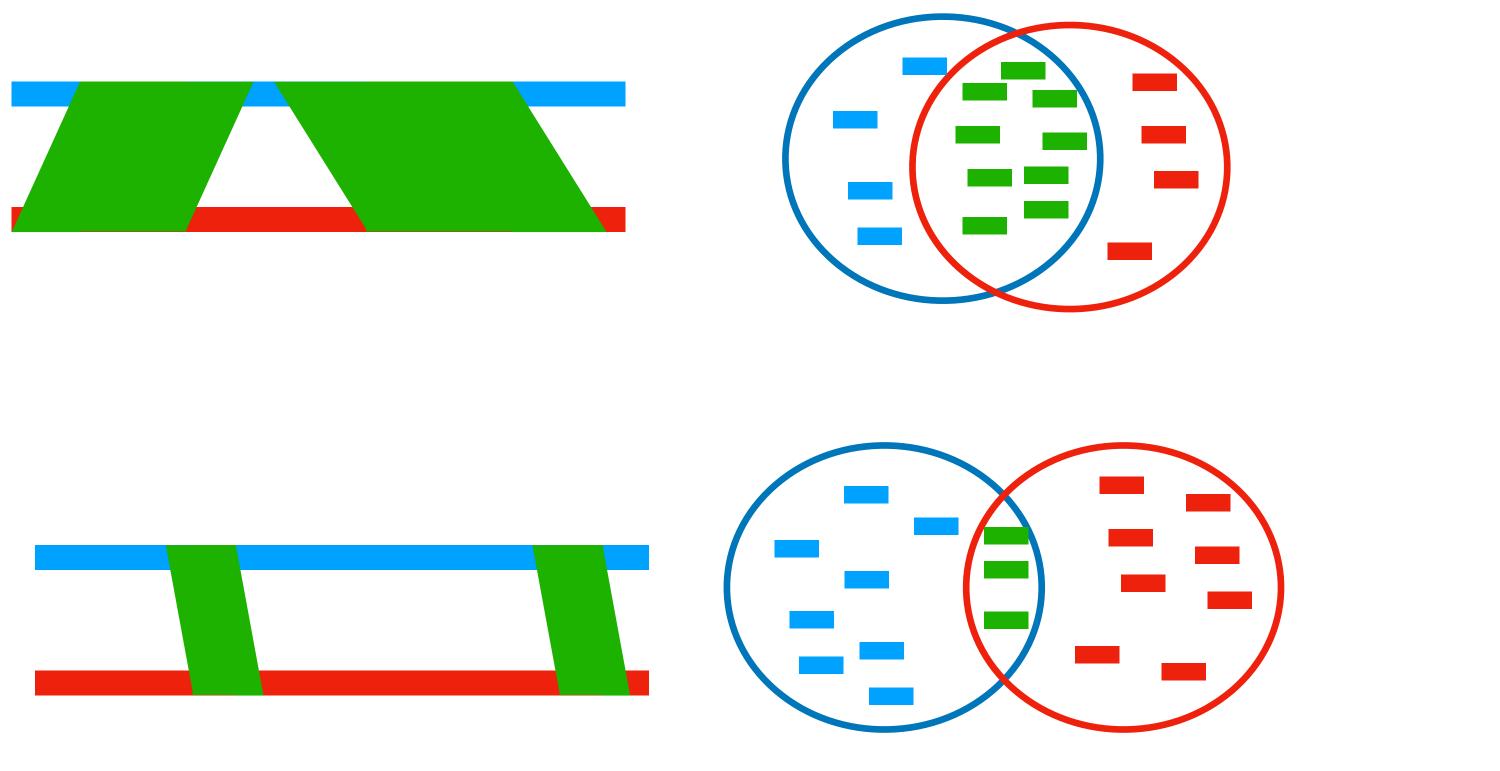
Jaccard Similarity

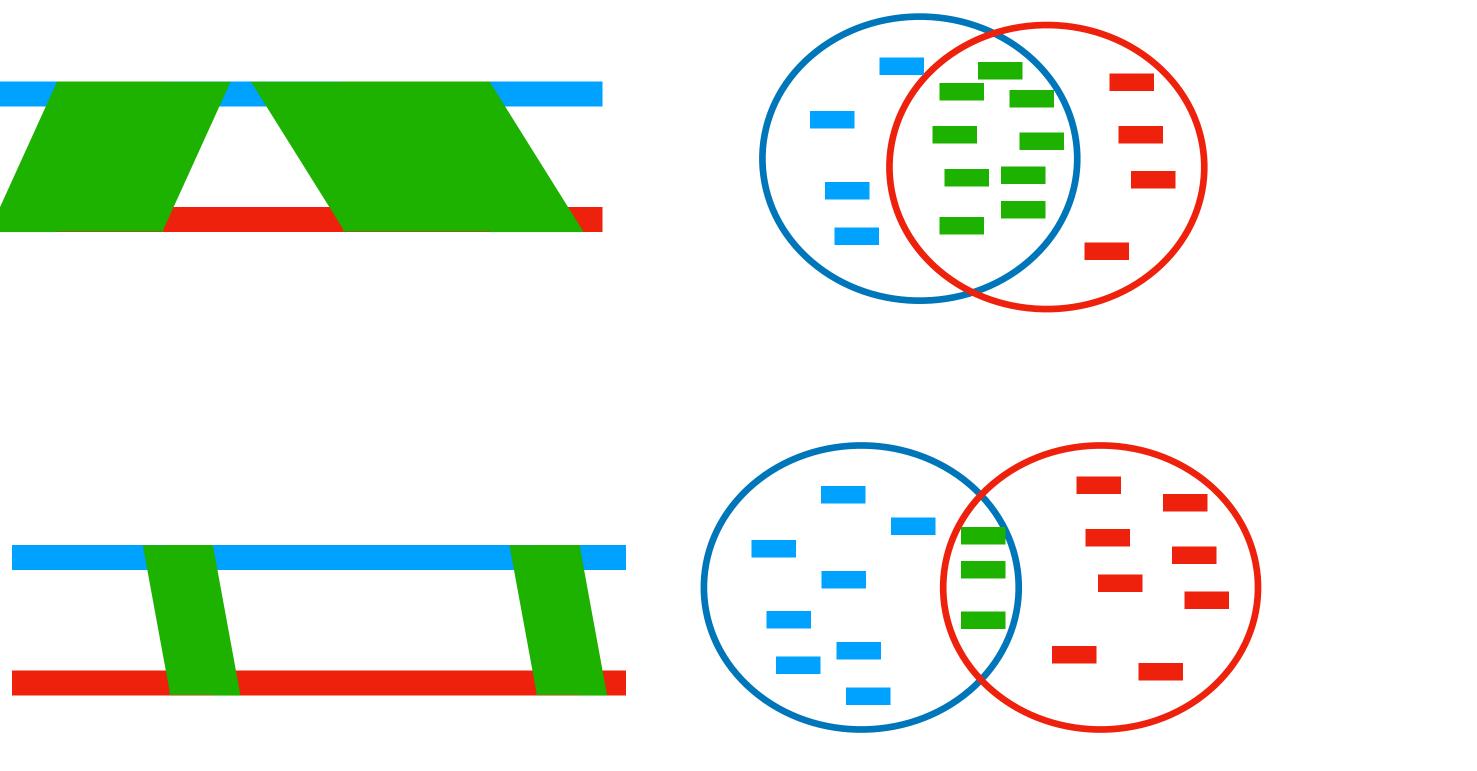
J(A, B)



How would we use **Jaccard for sequences?**

being compared





Jaccard Similarity

In sequence analysis we construct a sets of k-mers for each of the strings

Min-Hash Sketch

Calculating the union and intersection of a set of anything (in particular \$k\$mers) can be time consuming (O(n) time)

Can we calculate it faster?

Consider the following scenario:

- given a hash function on k-mers h: $\Sigma^k \rightarrow Z^+$ • and the sets of k-mers for two string A and B, • What is the probability that $\min_{c \in A} \{h(c)\} = \min_{c \in B} \{h(c)\}$?

Turns out that

$$Pr_h\left[\min_{c\in A}\left\{h(c)\right\}\right.$$

 $\} = min_{c\in B} \{h(c)\} = J(A, B)$

Min-Hash Sketch

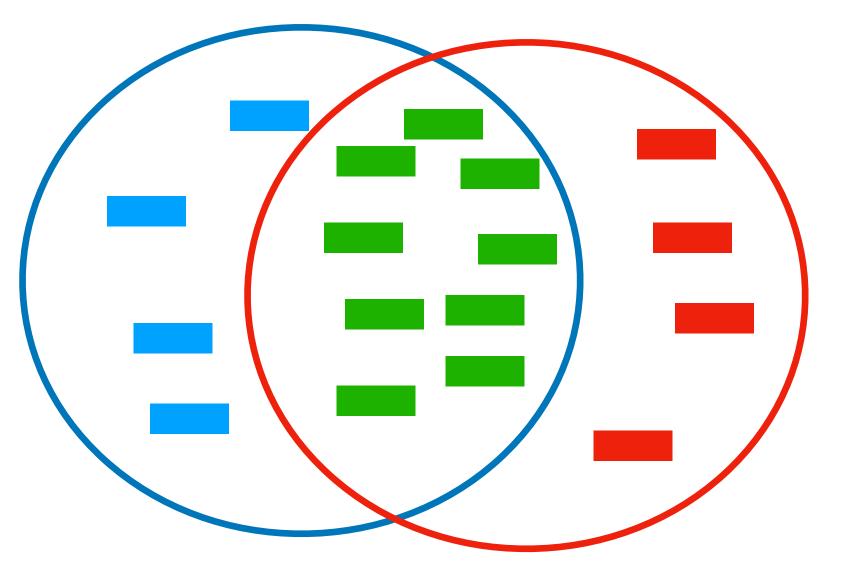
Why is $Pr_h[min_{c \in A} \{h(c)\} = min_{c \in B} \{h(c)\}] = J(A, B)$?

Think of *h* as applying a randomized ordering on the *k*-mers.

If the minimum *k*-mer from the union is in the intersection, it will be minimum for both *A* and *B*.

How many minimum *k*-mers from the union can we choose?

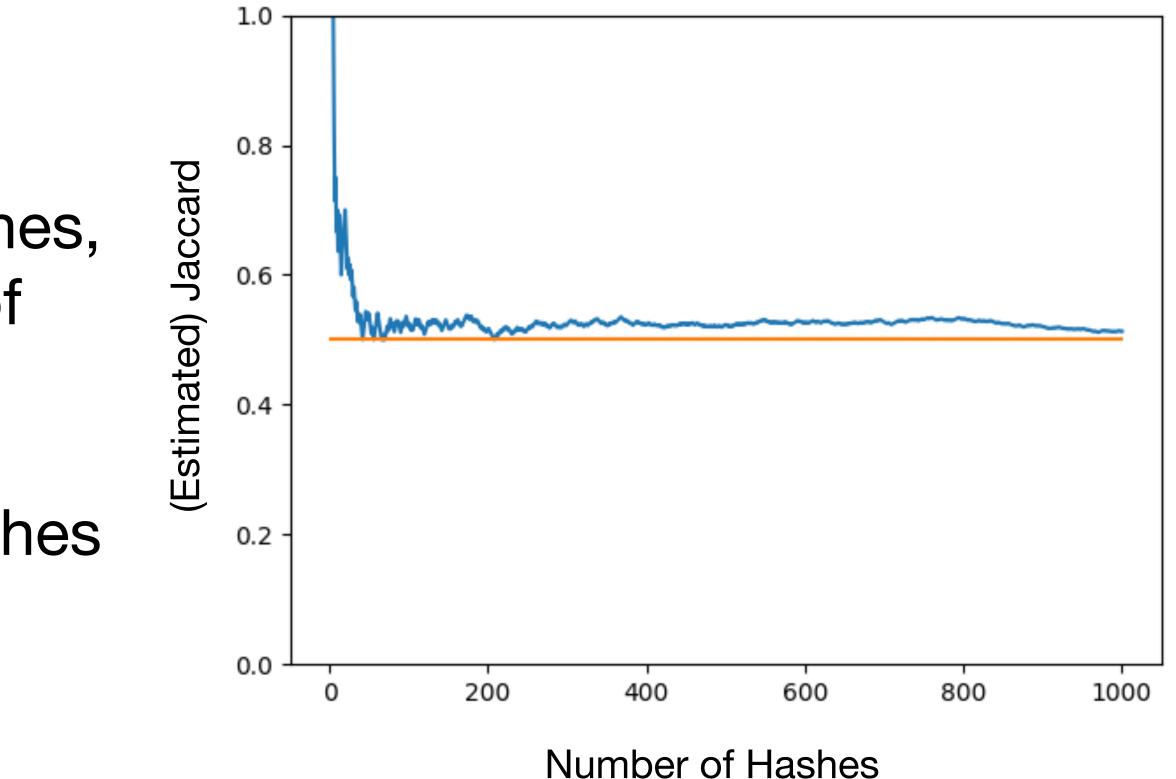
What fraction of those are in the intersection?



Min-Hash Sketch

As you increase the number of hashes, you will get closer to the estimate of the real jaccard value

Finding that many independent hashes may be hard



Min Hash Sketch with 1 Hash

The idea is that you choose the minimum *n* elements according to the hash h, and compute jaccard on these subsets

This subset of k-mers is called a "sketch"

Sometimes called "MinHash bottom sketching"

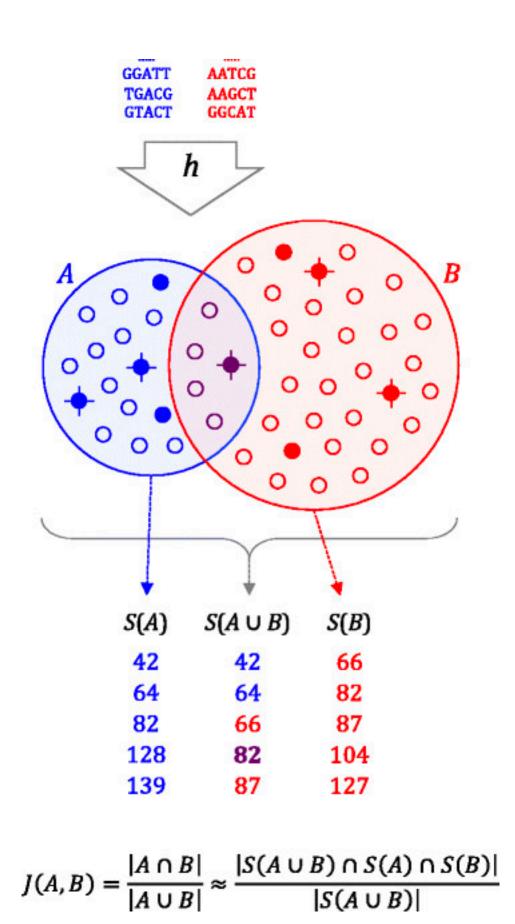
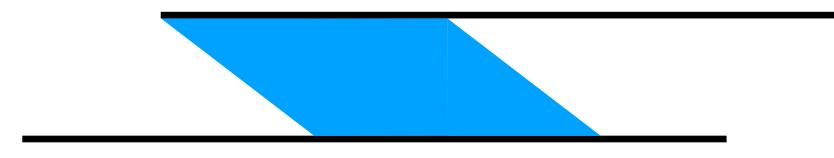


Image credit: Ondov, et al. (2016) Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biology.

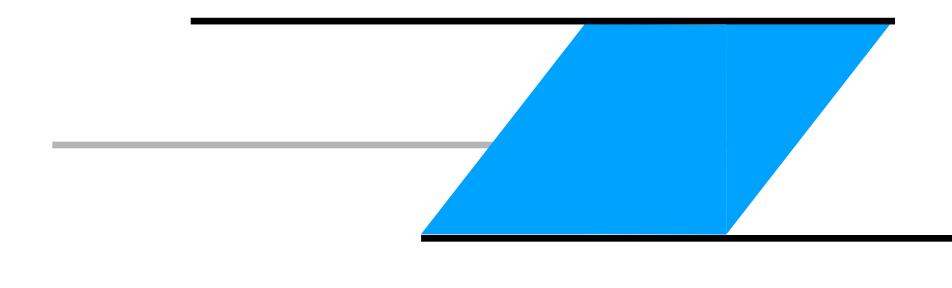
k-mer in overlapping windows

- Another way to sketch a sequence is though the use of minimizer schemes
- Here a set of k-mers for a sequence are selected by finding the minimum

Roberts, *et al.* (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

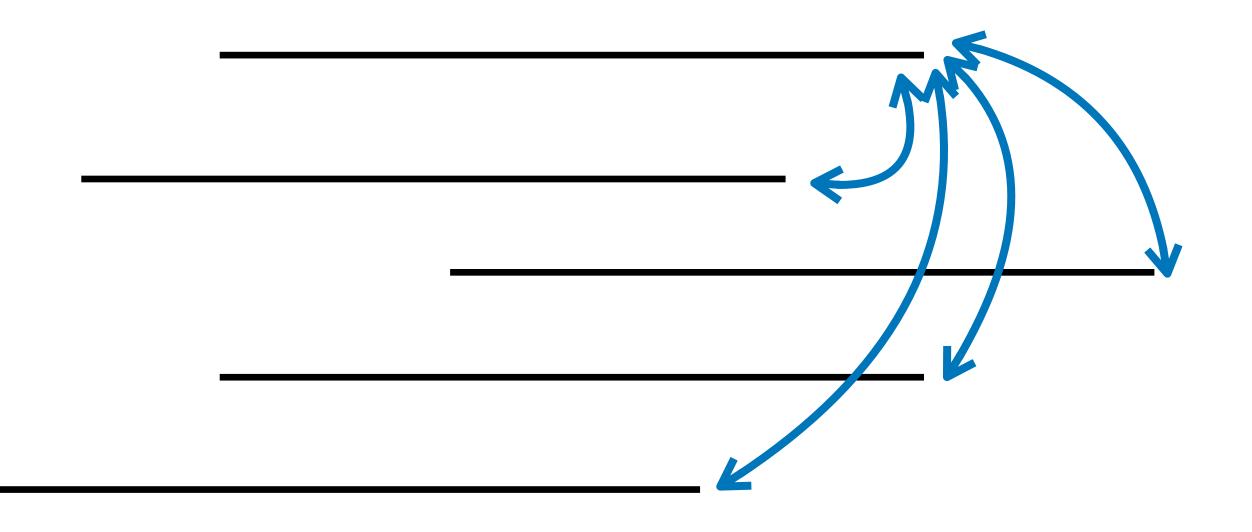


Roberts, *et al.* (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

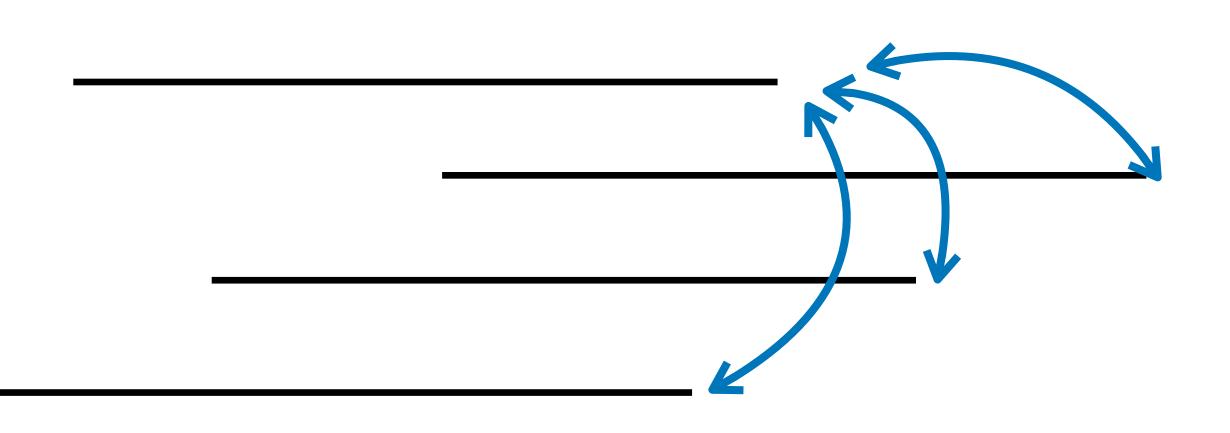


11

Roberts, *et al.* (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

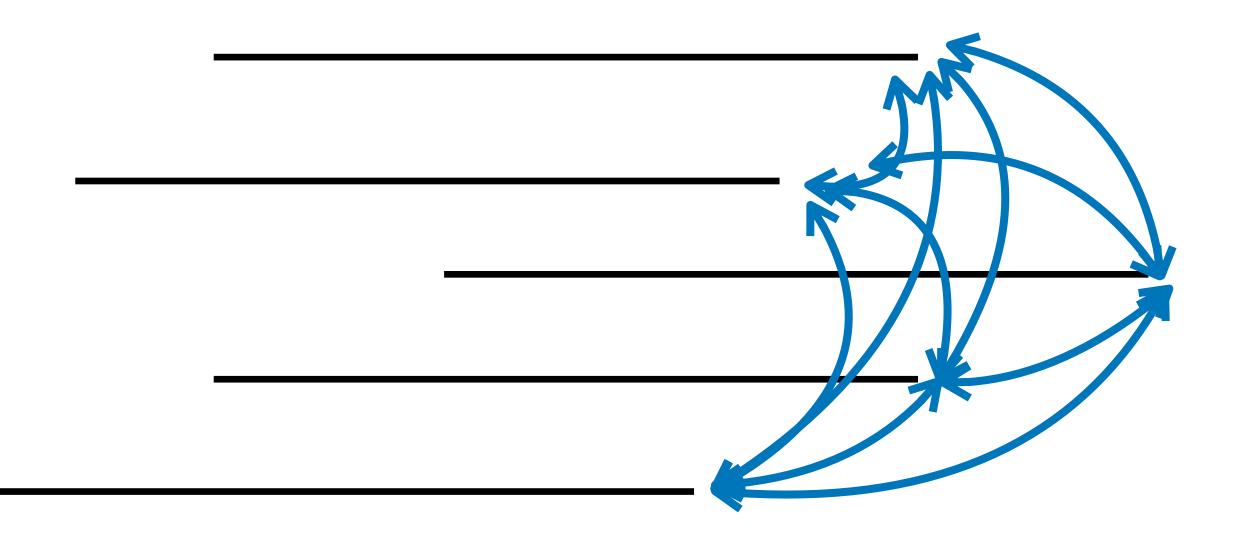


Roberts, *et al.* (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation



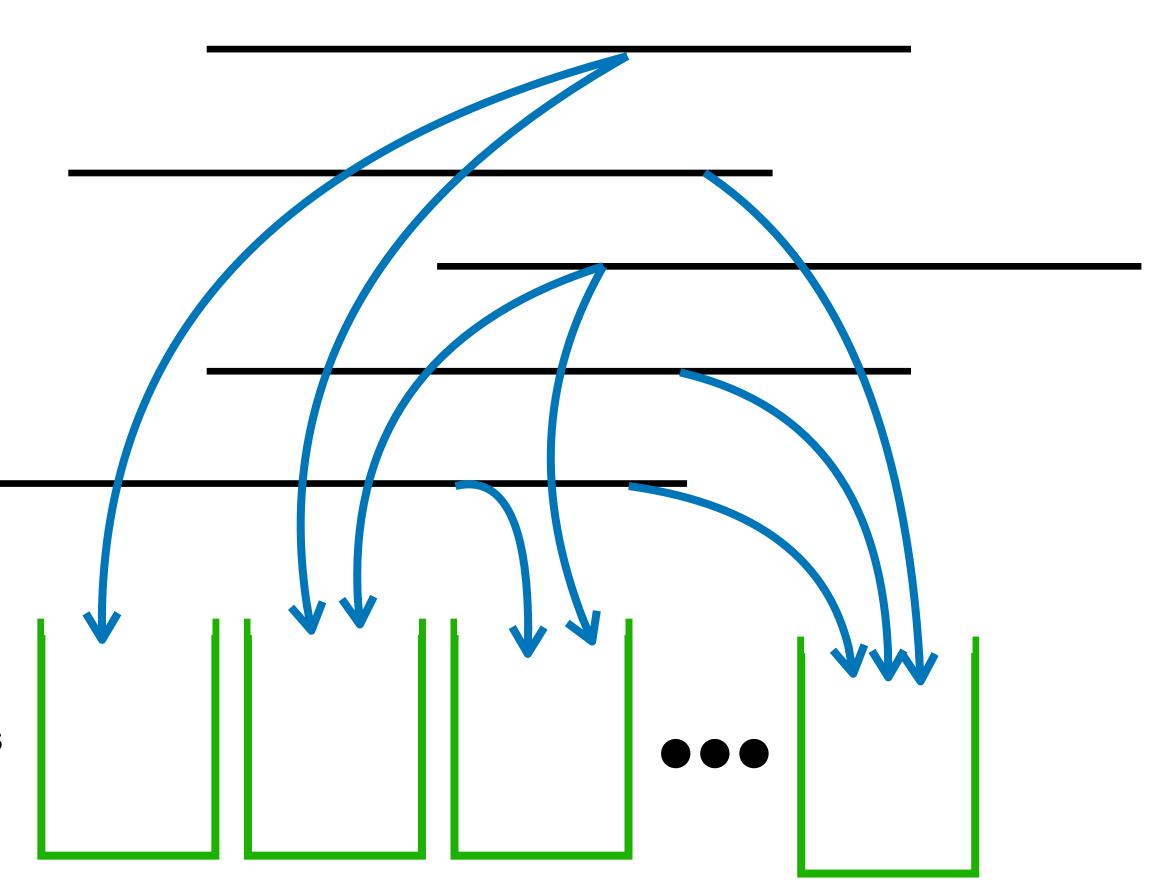
Roberts, et al. (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

O(n²) alignments!



Roberts, *et al.* (2004) introduced minimizer schemes as a way to decrease the time needed for sequence overlap computation

Only compare within bins

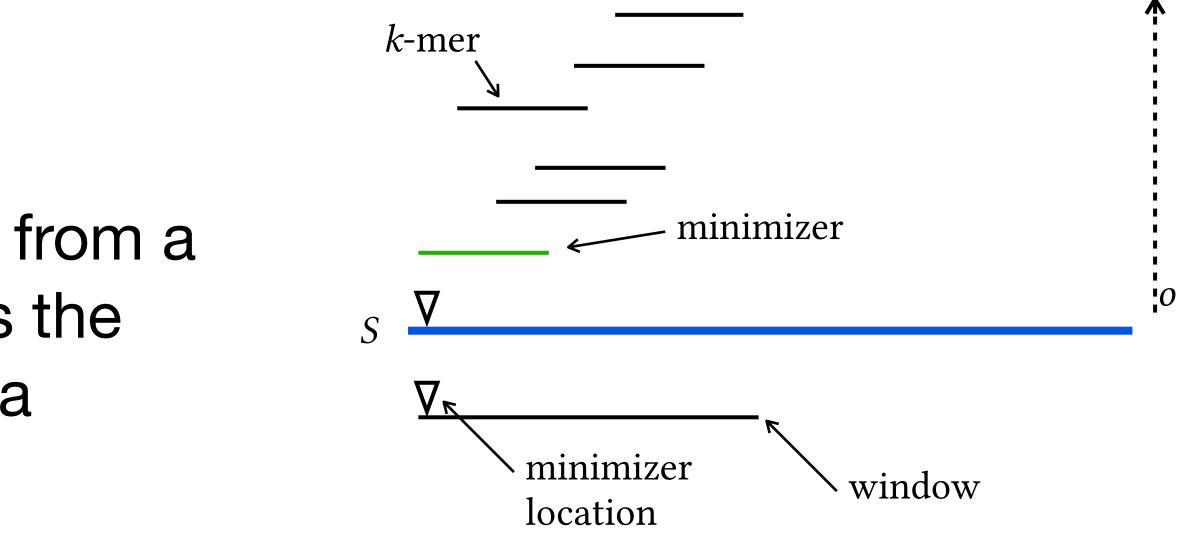


- Minimizer schemes have two special properties:

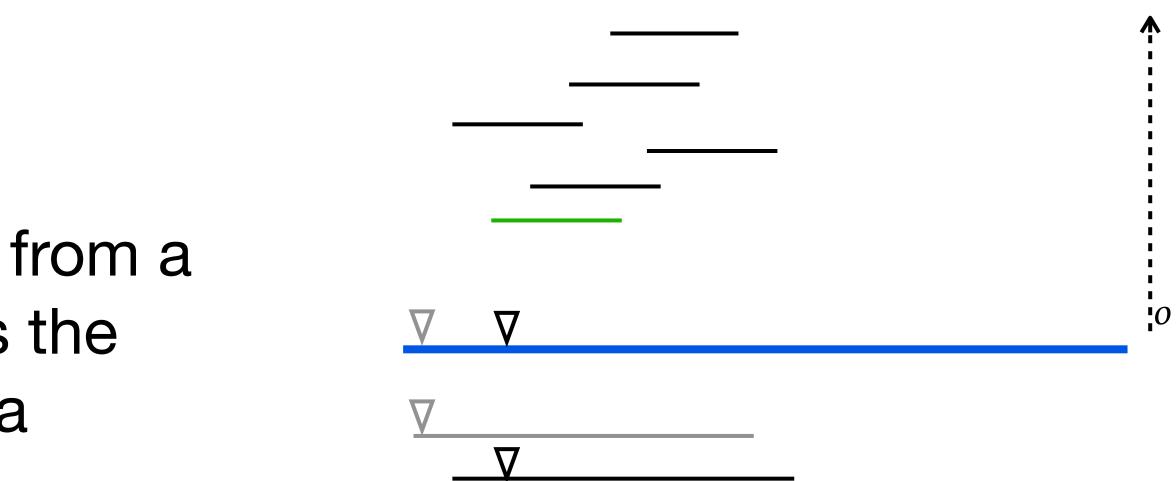
 - there are no large gap between selected k-mers
- Use in k-mer counting, de Brujin graph construction, data structure sparsification, etc.

• two sequences with a long exact match must select the same k-mers

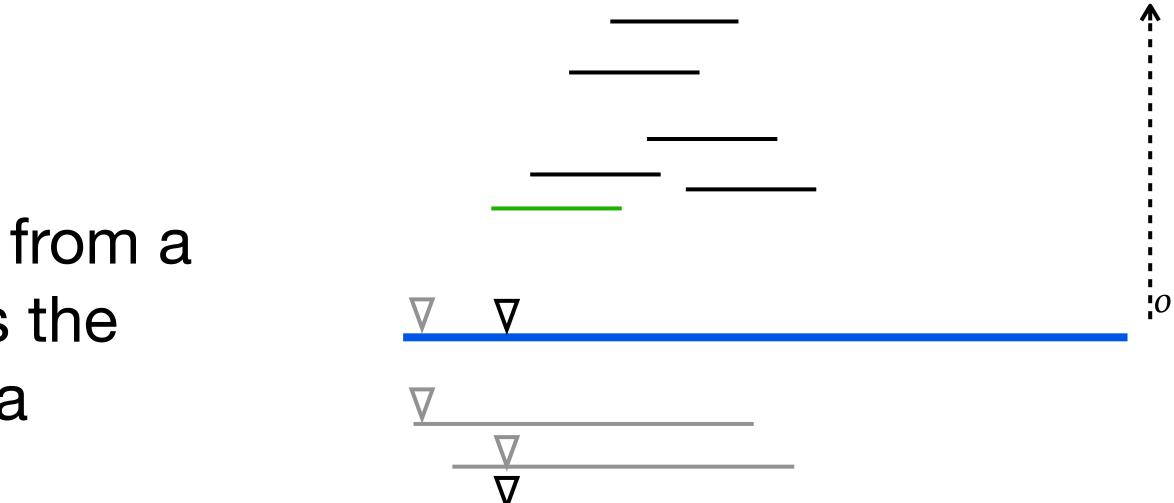
For a windows of *w* consecutive *k*-mers from a sequence *S*, a minimizer scheme selects the minimum according to an ordering o as a representative



For a windows of *w* consecutive *k*-mers from a sequence *S*, a minimizer scheme selects the minimum according to an ordering o as a representative

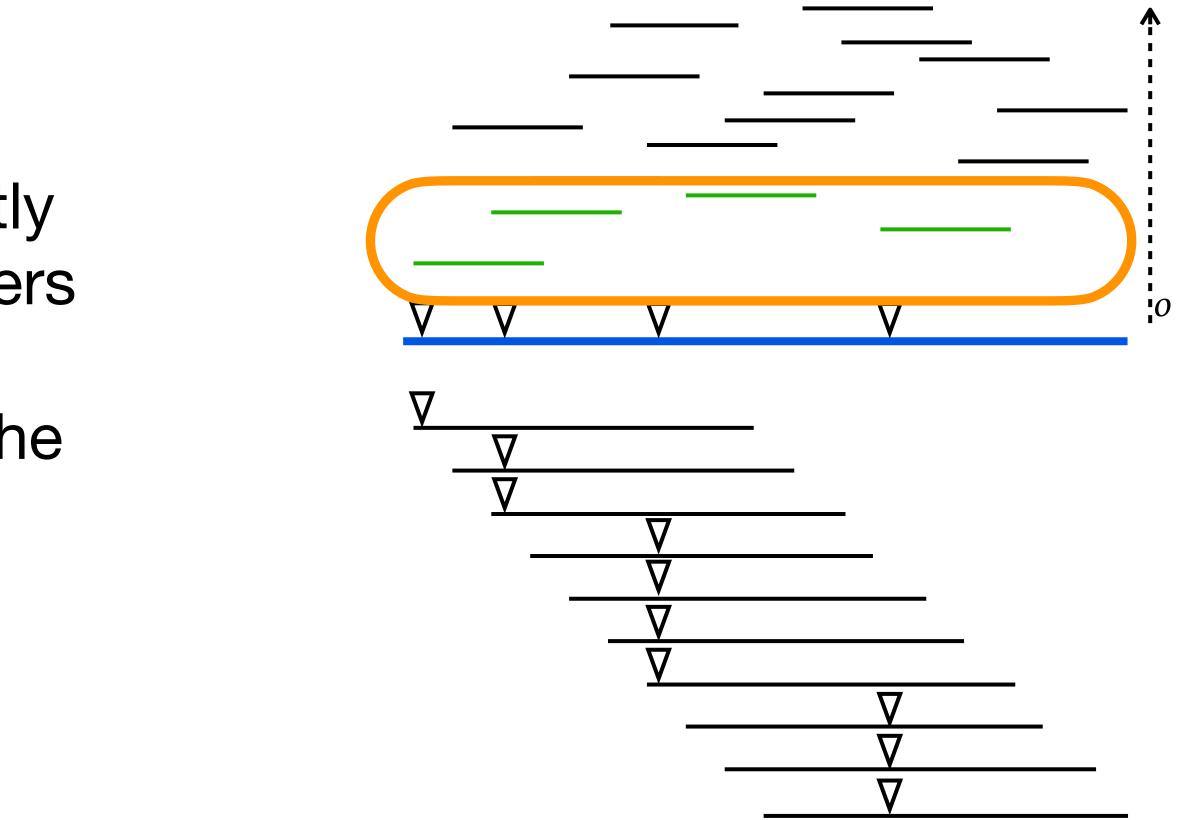


For a windows of *w* consecutive *k*-mers from a sequence *S*, a minimizer scheme selects the minimum according to an ordering o as a representative



- Changing the ordering used can greatly impact the number of unique minimizers
- Can we find an order that minimizes the number of minimizer locations

Only some *k*-mers are used a minimizers

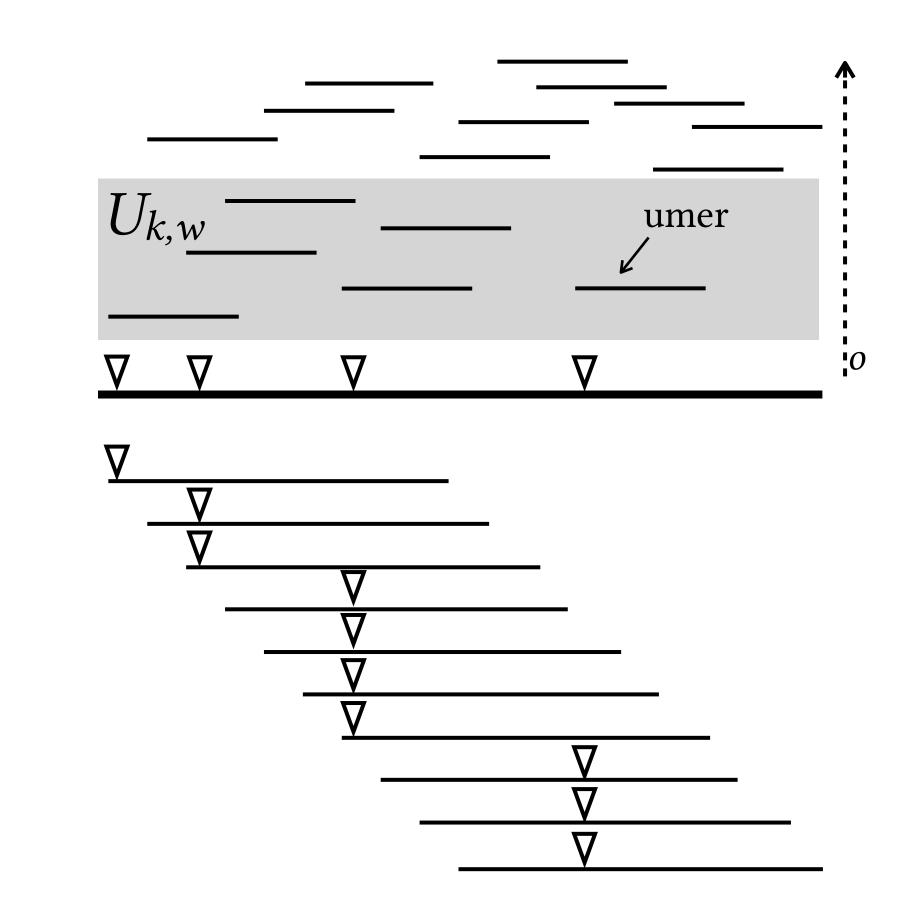


Universal k-mer Set

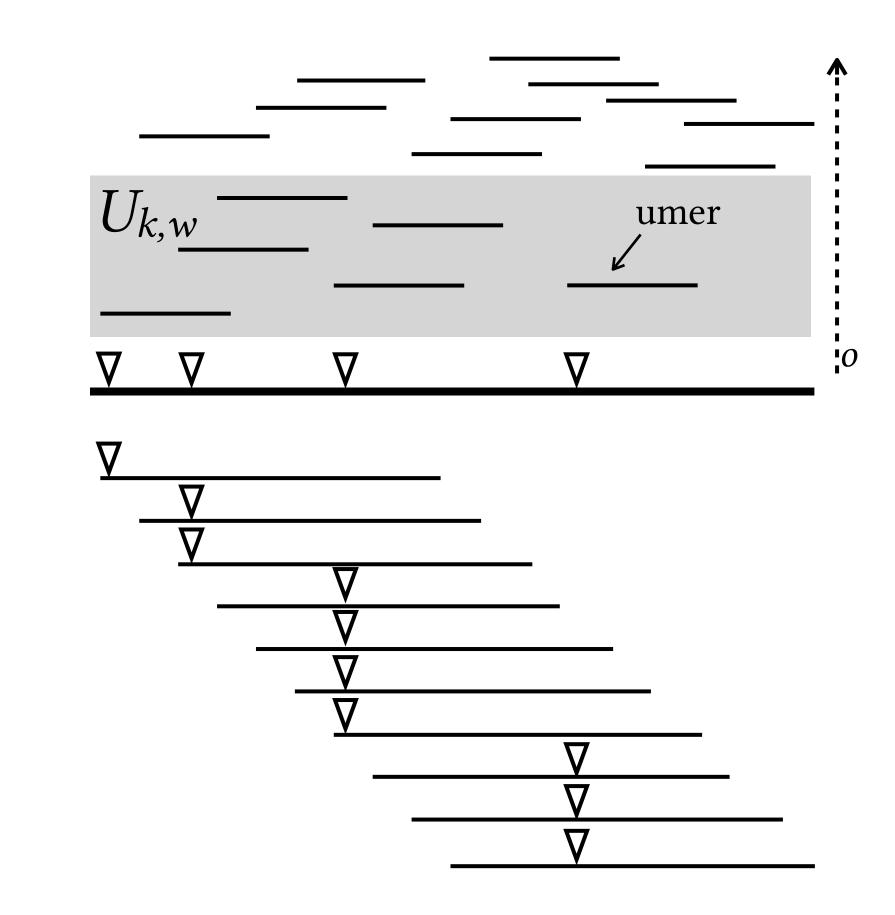
consecutive k-mers must contain at least one element from the set

A universal k-mer set $U_{k,w} \subseteq \Sigma^k$ is a set of k-mers such that any window of w

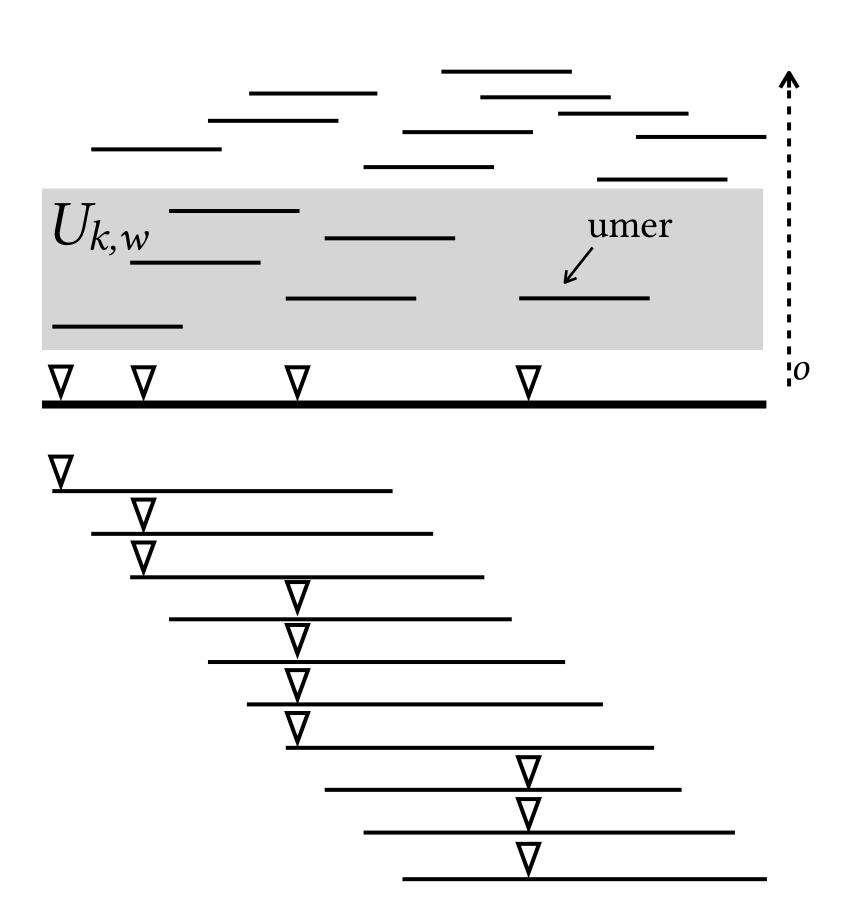
- A universal k-mer set induces a family of compatible orderings
- Orderings based on universal sets have better performance then lexicographic or random orders (Marçais, et al., 2017)



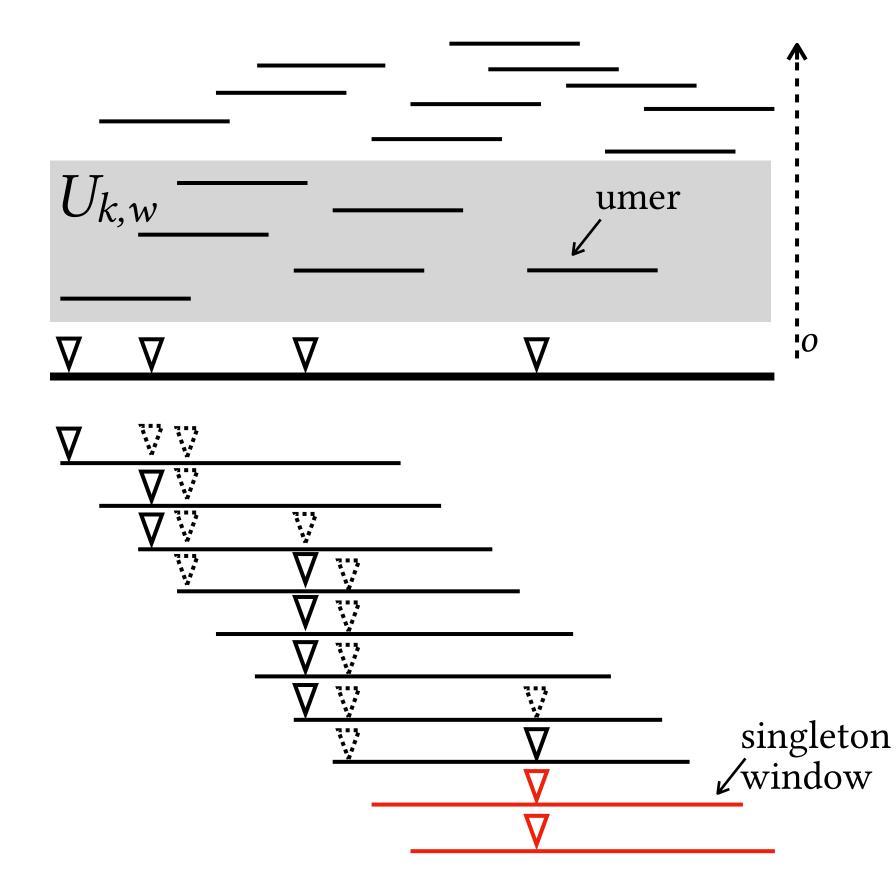
- A universal k-mer set induces a family of compatible orderings
- Orderings based on universal sets have better performance then lexicographic or random orders (Marçais, et al., 2017)



- Set Size
 - Fraction of all k-mers in the universal set
- Density
 - Normalized count of minimizer locations in S

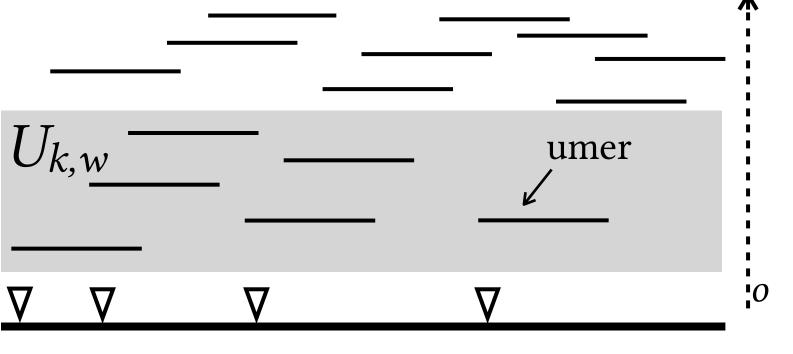


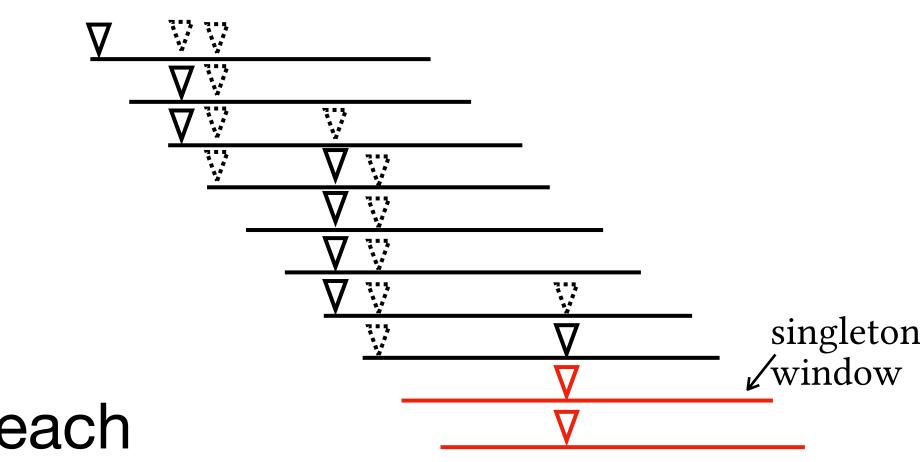
- Set Size
 - Fraction of all k-mers in the universal set
- Density
 - Normalized count of minimizer locations in S
- Sparsity
 - Normalized count of windows in S with only one umer (universal k-mer)



- Set Size
 - Fraction of all k-mers in the universal set
- **Expected** Density
 - Normalized count of minimizer locations in B_L
- **Expected** Sparsity
 - Normalized count of windows in *B_L* with only one umer (universal k-mer)

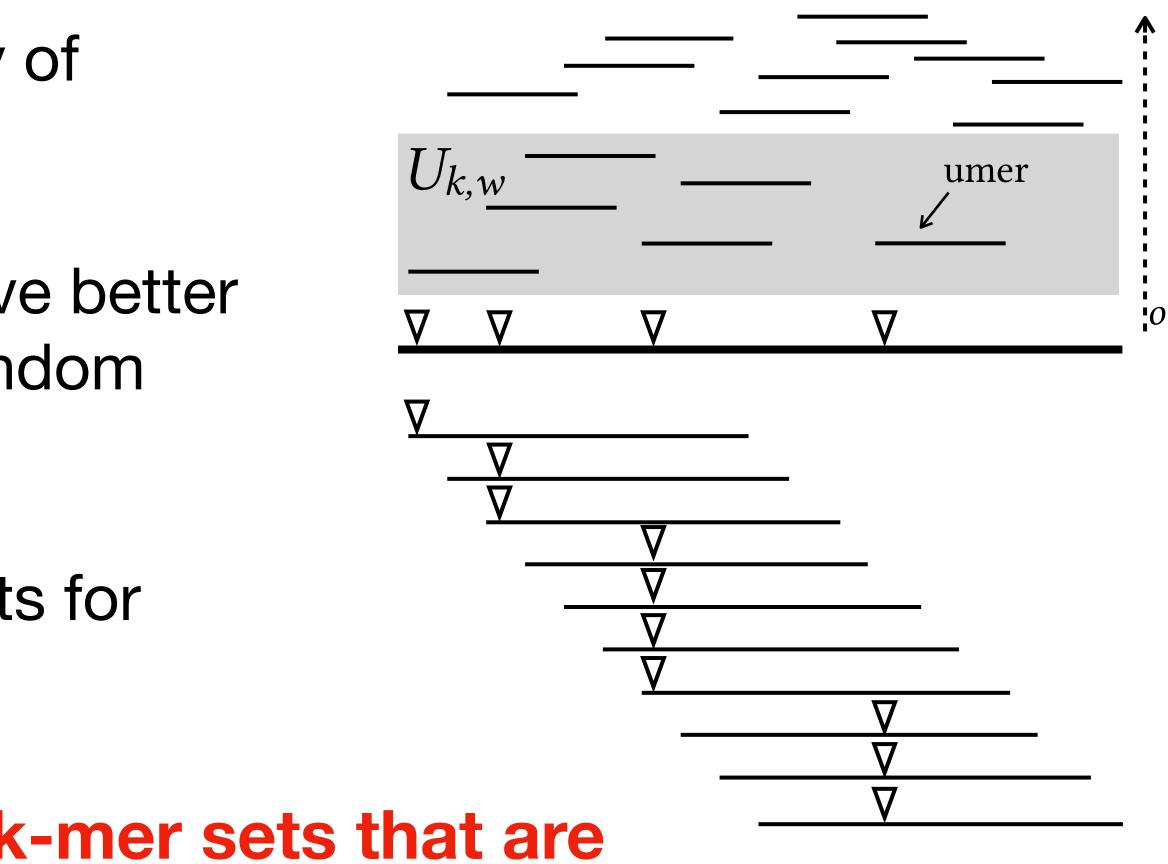
B_L is the **de Brujin** sequence of order L, it contains each window exactly once





- A universal k-mer set induces a family of compatible orderings
- Orderings based on universal sets have better performance then lexicographic or random orders (Marçais, et al., 2017)
- Current methods cannot construct sets for values of k and w used in practice

Can we construct universal k-mer sets that are practical for use in minimizer schemes?



Nicolaas Govert de Bruijn and Irving John Good in 1946

they are used to encode sequence information as paths in a graph

Definition a k-order de Brujin Graph (DBG) D = (V, E) has: • $V = \Sigma^k$ -- there is a vertex for each possible k-mer • $E = \{ax \rightarrow xb \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\}$ -- for each (k+1)-mer axb,

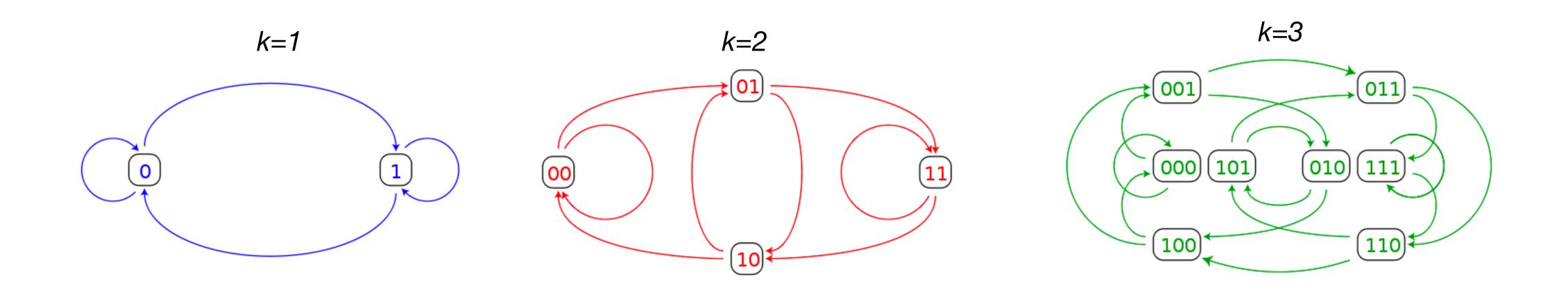
Detour: De Brujin graphs

- though we call them De Brujin graphs they were independently described by

 - there is an edge from the k-mer ax to the k-mer xb

De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) D = (V, E) has: • $V = \Sigma^k$ -- there is a vertex for each possible *k*-mer • $E = \{ax \rightarrow xb \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\}$ -- for each (k+1)-mer axb,

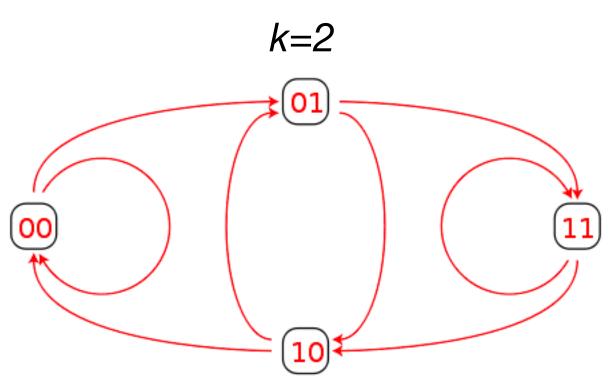


- there is an edge from the k-mer ax to the k-mer xb

De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) D = (V, E) has: • $V = \Sigma^k$ -- there is a vertex for each possible k-mer • $E = \{ax \rightarrow xb \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\}$ -- for each (k+1)-mer axb,

Each node has σ outgoing edges, and σ incoming edges

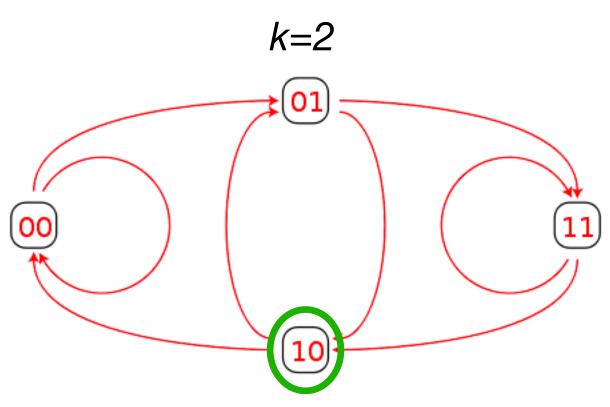


- there is an edge from the k-mer ax to the k-mer xb

De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) D = (V, E) has: • $V = \Sigma^k$ -- there is a vertex for each possible k-mer • $E = \{ax \rightarrow xb \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\}$ -- for each (k+1)-mer axb,

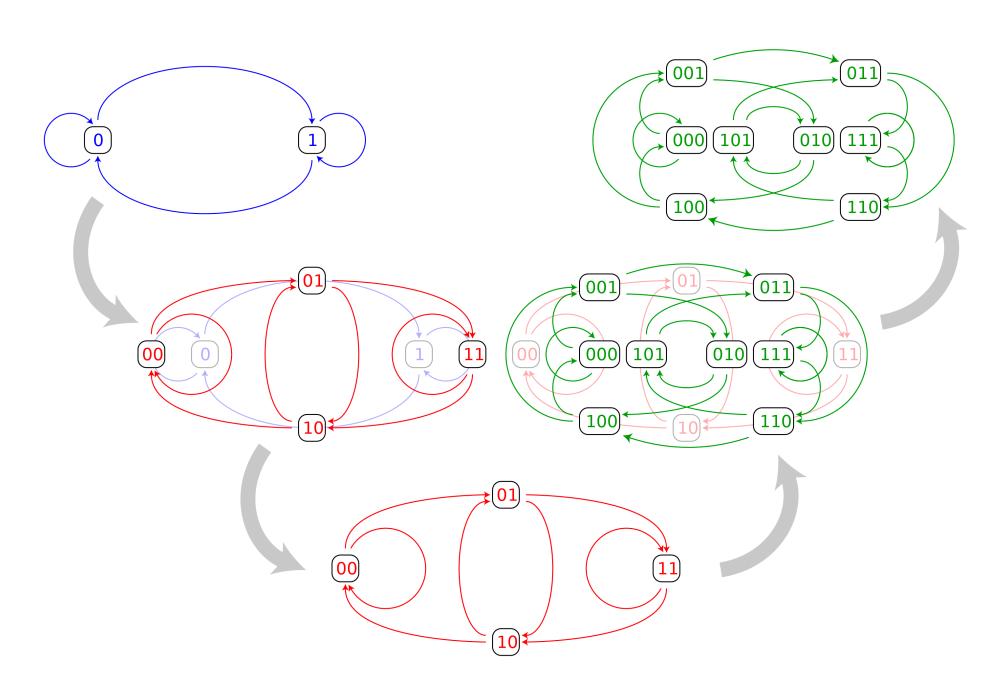
Each node has σ outgoing edges, and σ incoming edges



- there is an edge from the k-mer ax to the k-mer xb

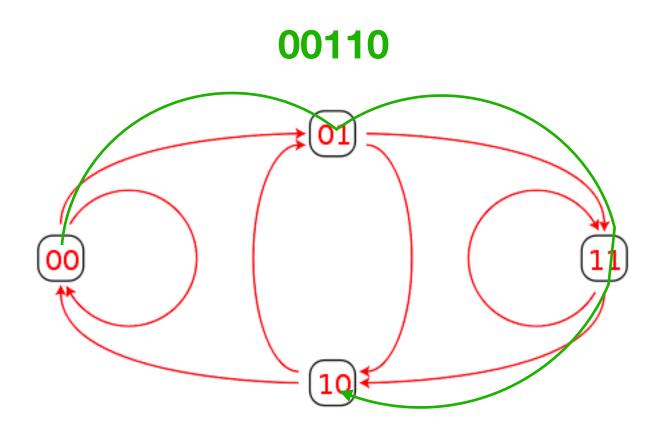
Any string over the alphabet can be encoded as a path on the DBG

Example: 1011000

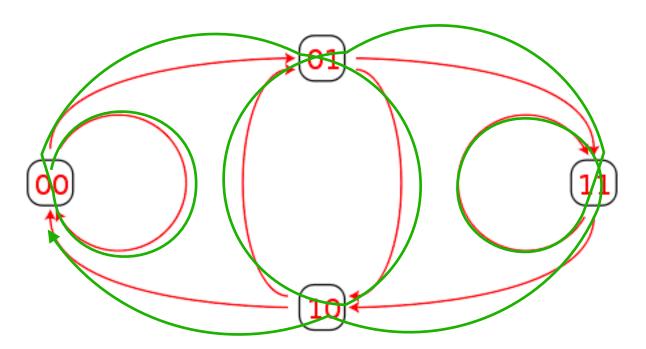


the de Brujin of order k is a line graph of the debrujin graph of order k-1

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it contains all *k*-mers exactly once



A de Brujin sequence is an Hamiltoninan path of the graph, meaning it contains all *k*-mers exactly once • or the *Eulerian* path of the graph of k-1



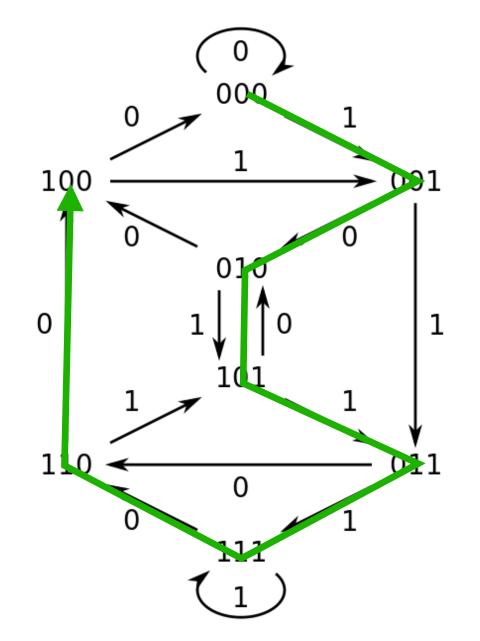
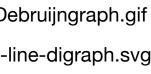
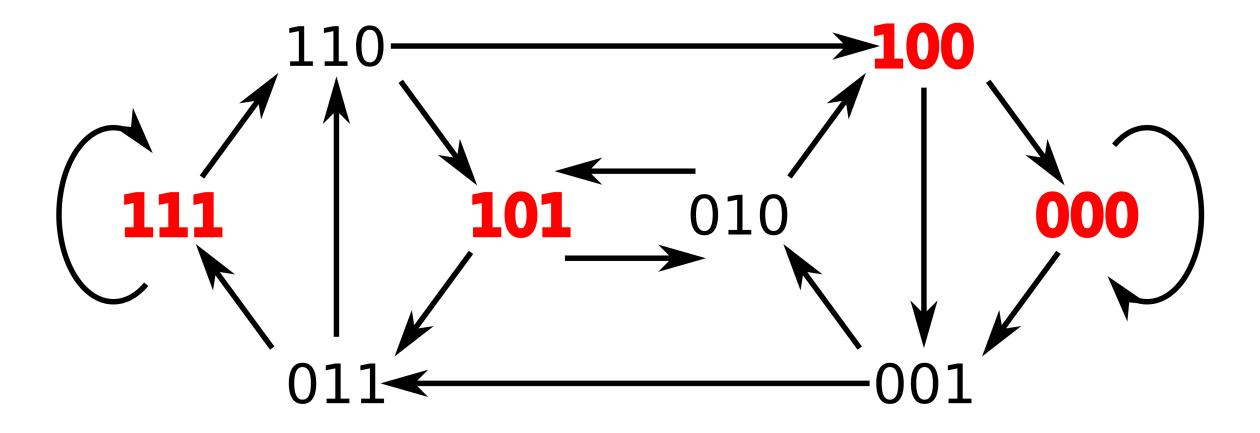


Image courtesy commons.wikimedia.org/wiki/File:Debruijngraph.gif

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg



a decycling set of edges a de Brujin graph is a set of nodes that when removed leave a DAG

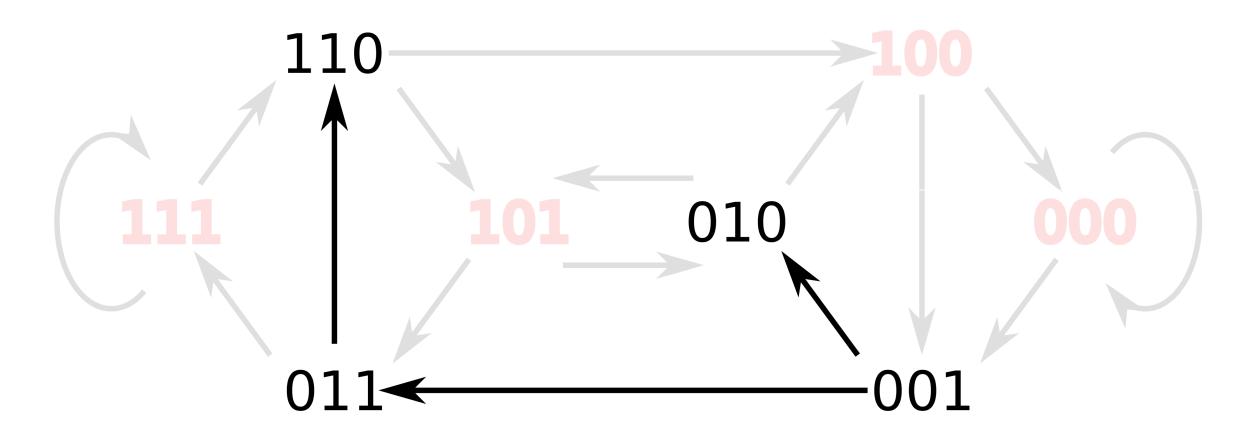


- this set of k-mers is guaranteed to exist in all long enough sequences

Can you find a length 6 binary sequence, which does not intersect one of the red *k*-mers?

Image courtesy of Guillaume Marçais

a decycling set of edges a de Brujin graph is a set of nodes that when removed leave a DAG



- this set of k-mers is guaranteed to exist in all long enough sequences

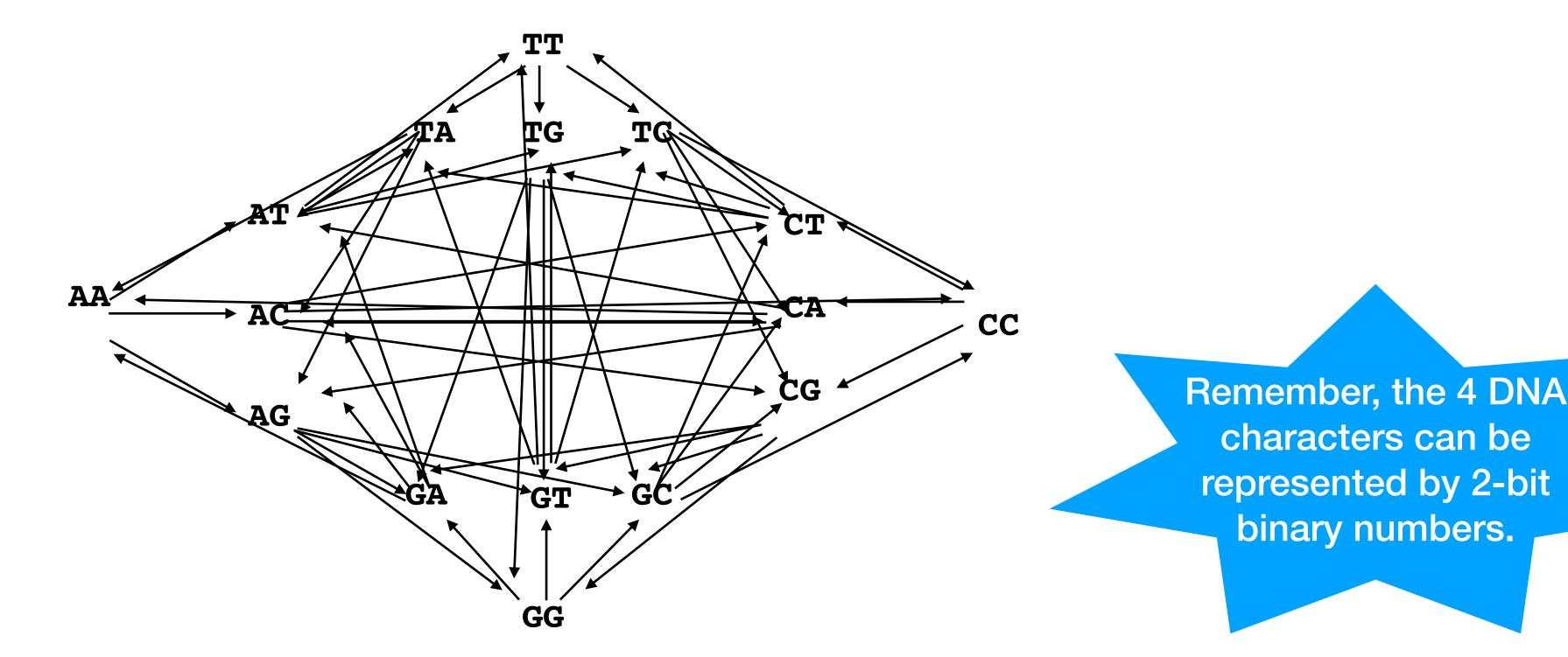
Can you find a length 6 binary sequence, which does not intersect one of the red *k*-mers?

Image courtesy of Guillaume Marçais

DBG for DNA

What we have seen in the previous slides was the DBG for $\Sigma = \{1, 0\}$

For DNA ($\Sigma = \{A, C, T, G\}$) the graph is a little more complicated



Universal k-mer Set Extension

The naïve extension $U_{k,w} \cdot \Sigma$ of a universal set $U_{k,w}$ is universal

create $|\Sigma|$ new(*k*+1)-mers from each *k*-mer by concatenating each character from Σ to the end

Example:

- **ACCTG** $\in U_{k,w} \rightarrow$
- $\{\text{ACCTGA, ACCTGC, ACCTGT, ACCTGG}\} \in U_{k,w} \cdot \Sigma$

Universal k-mer Set Extension

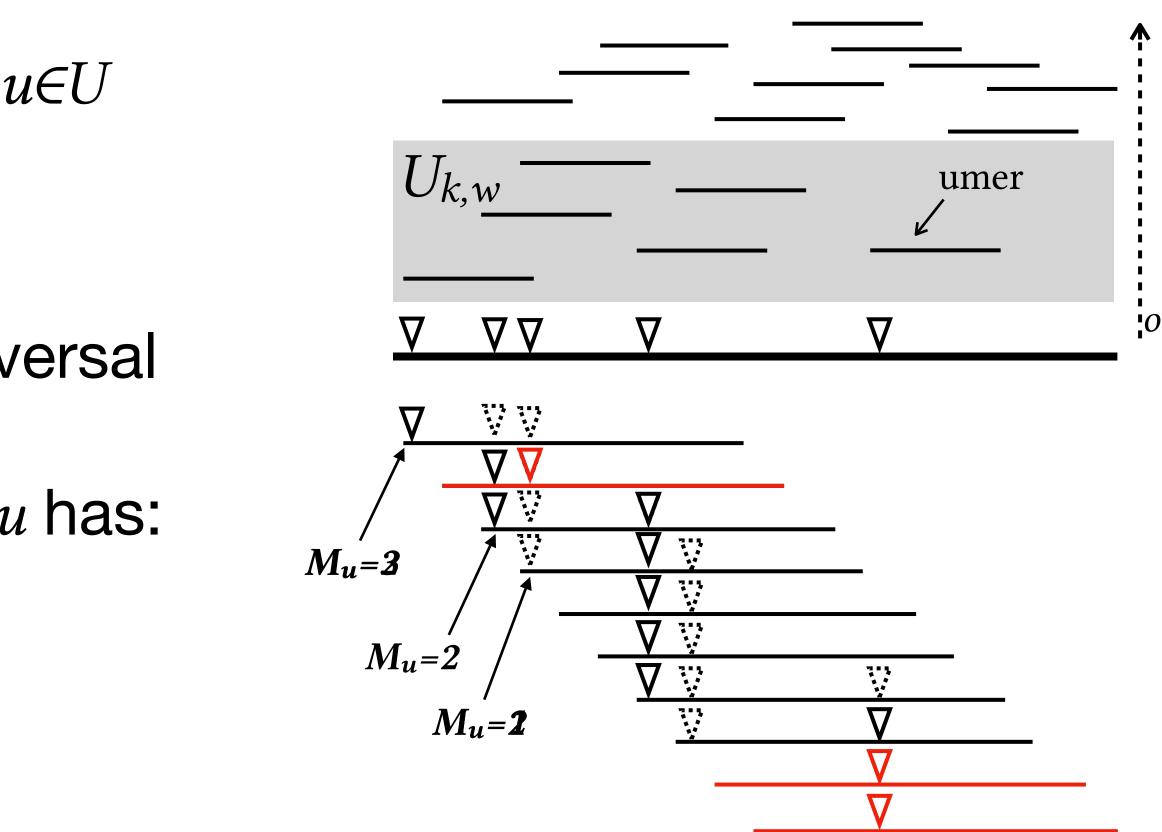
The naïve extension $U_{k,w} \cdot \Sigma$ of a universal set $U_{k,w}$ is universal

The sparsity of $U_{k,w} \cdot \Sigma$ is equal to that of $U_{k,w}$

The density of a compatible order for $U_{k,w} \cdot \Sigma$ is less than or equal to the density of a compatible order for $U_{k,w}$ if the orderings are compatible with each other

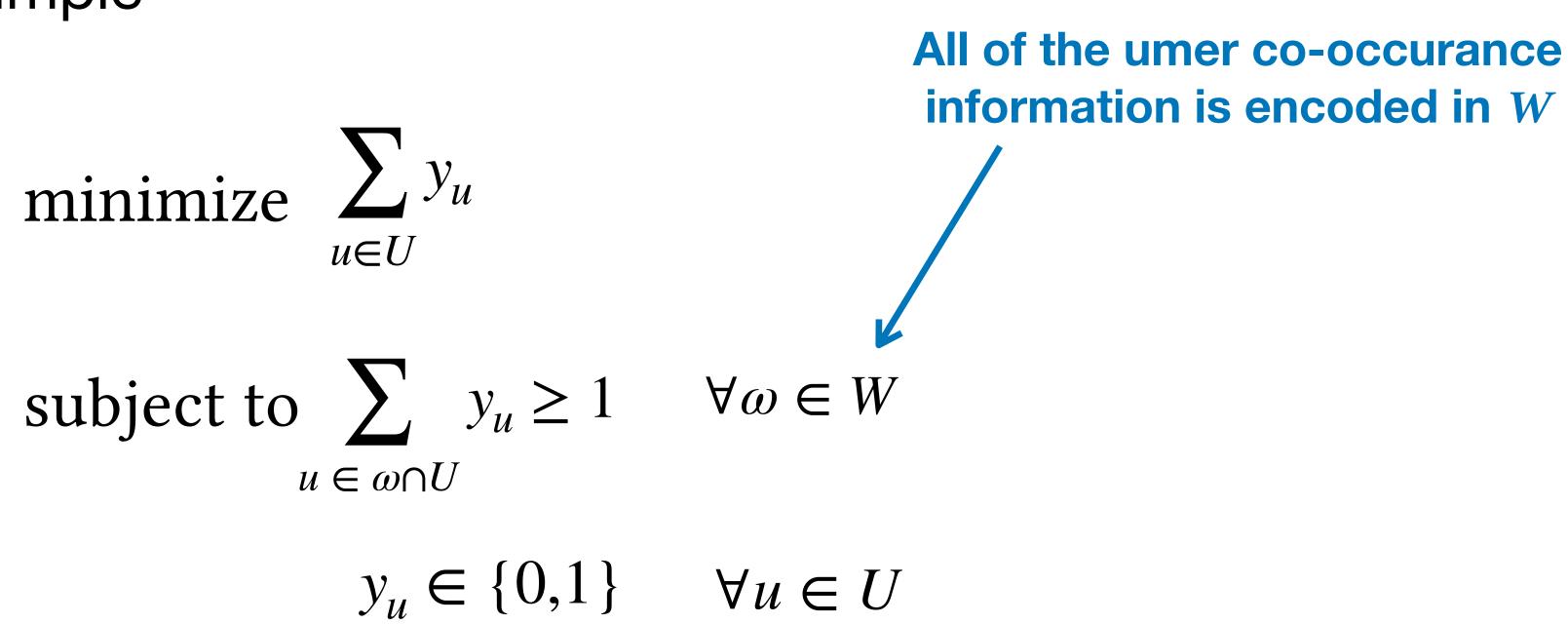
M_u and re M_u val

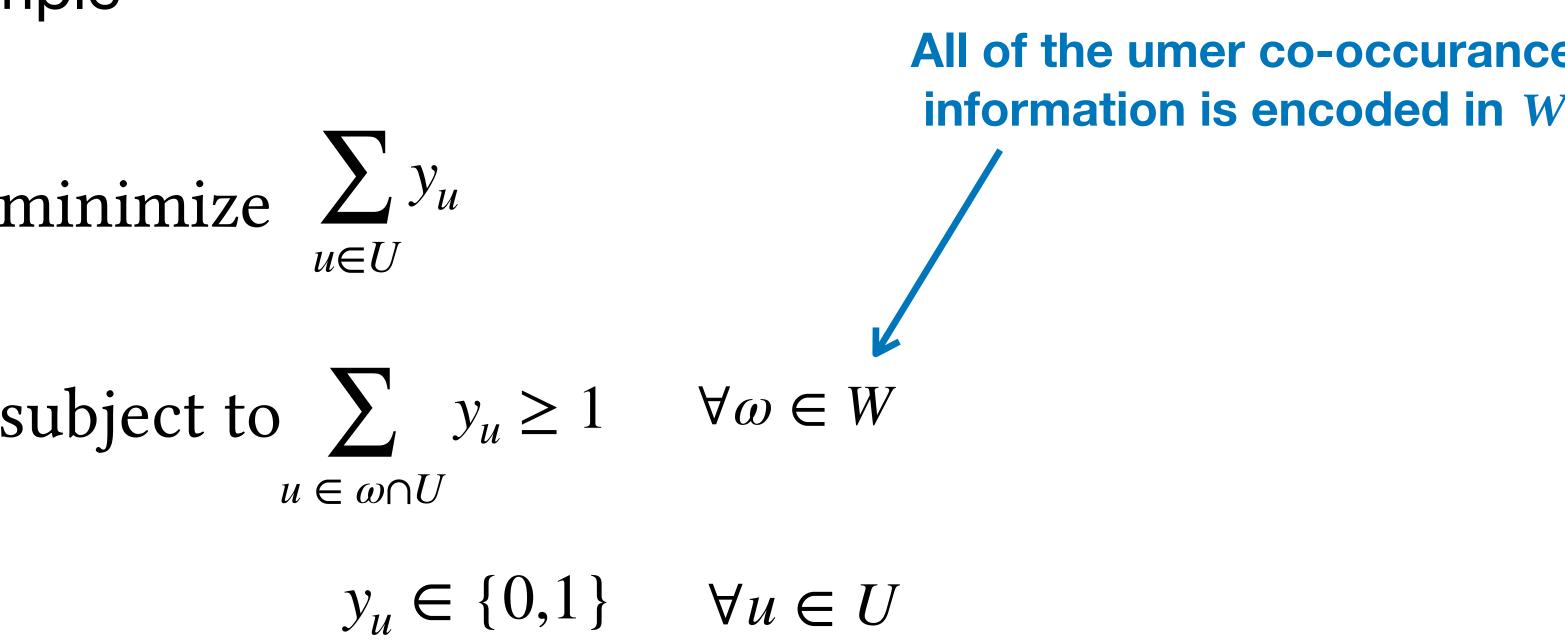
- the minimum co-occurance count for $u \in U$ $M_u = \min_{\omega \in W_u} |\omega \cup U|$
- For any $u \in U$ such that $M_u > 1$, $U \setminus u$ is universal
- The universal set after the removal of *u* has:
 - smaller size, and
 - higher (possibly equal) sparsity



Optimal reM_u val

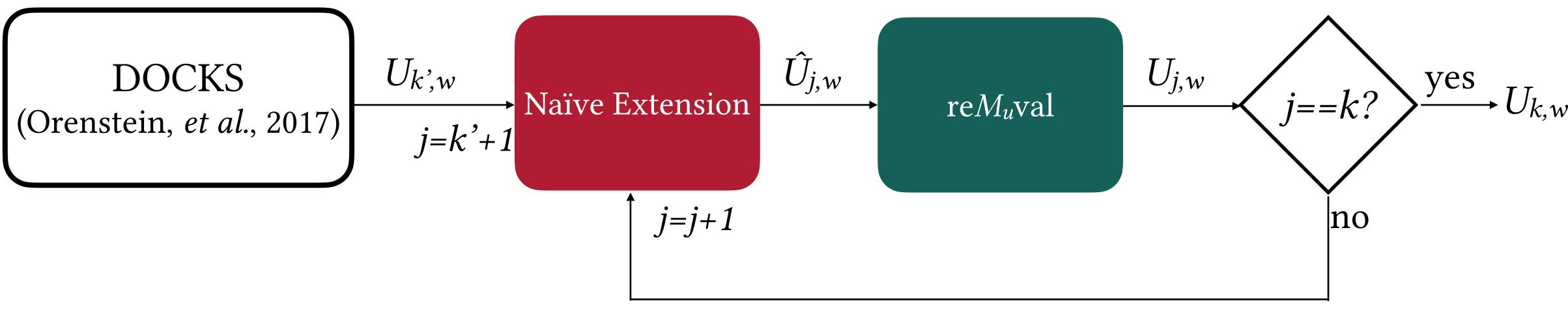
- Not all umers with $M_u > 1$ can be removed from U,
- retain
- The ILP is deceptively simple





• Integer linear programming (ILP) is used to find the minimum number of k-mers to

Practical Universal *k***-mer Set Construction**



Local vs. Forward vs. Minimizer Schemes

Assume we're going to rewrite it $F(M) \rightarrow m$ where M is the ordered set of k-mers from the window, and *m* is the returned *k*-mer.

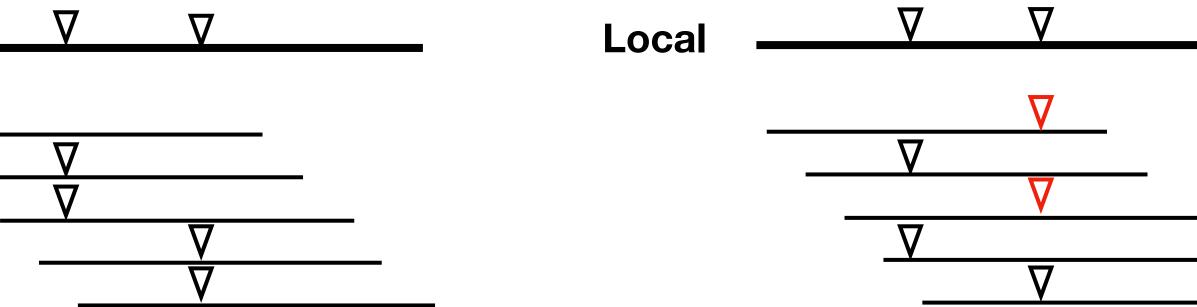
What if we relax the rules a bit:

- M the choice is at the same position or later
- Local Schemes -- choose any m

Minimizer C Forward C Local

• Minimizer Schemes -- choose the $m = \arg \min_{m' \in M} (O(m'))$

• Forward Schemes -- choose any m such that for all M' that can proceed



Problems with Jaccard



