
Office Hours

Thursday office hours:

•Moved to 12:30 (12:30-1:30pm)



Read Alignment

Adapted from Mäkinen, et al. Chapter 10



Computational Problem

Given 

•a reference genome G, and 

•a set of reads R = (r1,r2,r3,...,rk) ∈ (Σn)k where each read r is a subsequence 
of G with a small number changes


Output

•the semi-global alignment of ri and G for all ri ∈ R 



Computational Problem

Given 

•a reference genome G, and 

•a set of reads R = (r1,r2,r3,...,rk) ∈ (Σn)k where each read r is a subsequence 
of G with a small number changes


Output

•the semi-global alignment of ri and G for all ri ∈ R with <k changes

call these k-error mappings



Read Filtering
If a read is long enough, it should not align well to a random region of G


This assumes that the sequence was read correctly


Sequencing machines output a quality score for each position of a read

•this can be interpreted as a probability P(r[j]) that the character is correct

• in other words with probability P(r[j]), position r[j] is a random character


This means that a given sequence will match a random sequence with probability





•where qc is the probability of c in a random sequence

ℙ(r) = ∏
1≤i≤n

(ℙ (r [j]) qr[ j] + (1 − ℙ (r [j])))



Read Filtering

We expect the number of random matches between r and a given string T 
such that |T| = m to be 


We can then threshold the reads that are too low quality by this expectation

𝔼(r, T) = (m − n + 1)ℙ(r)



Pigeonhole Principle
Assume for now we're not dealing with insertions or deletions


The pigeonhole principle in this case says that if the read is partitioned into 
k+1 pieces, one must appear in the genome exactly if the read has a k-error 
mapping. 


All k-error mappings will have at least one exact match, not all exact 
matches lead to k-error mappings

G

r



Initial ideas to read mapping

Construct an index of G (say a succinct suffix array)


Search for each of the pieces of the read in the index


Verify each occurrence's alignment against that region of G

O(m log σ + (log(1+ε)n + m2/w) c) time

number of candidates



Aligning reads

We mentioned that we want the semi-global alignment of each read to the 
genome, ignoring any deletions (from the genome) at the start or end of the 
alignment 


We can align the read along the suffix tree of the genome, where each row is 
a position in the genome


parts of the alignment matrix will be shared. 



Aligning reads
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Aligning reads
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Only need to go to a depth of 2m since the best alignment 

can't be worse than deleting one string and inserting the other. 

We don't have the suffix tree!



Dynamic Programming using a BWT

Since we want to save the previous rows

•we can read the characters one-by-one from the sequence

•when you reach the max depth, backtack up the tree to the last branch

•overwrite the new rows with the characters read down the new branch


How do we backtrack on a BWT?



Dynamic Programming using a BWT

define Branch(d,[i...j]): 
for c ∈ idx.enumerateRight(i,j) do 

process (c,d)  
if d = 2m and score > threshold do 

output alignment 
if d < 2m do 

Branch(d+1,idx.extendRight(c, [i,j]))

compute the dynamic programming table row 
using character c in row d

O(mσ)-time
O(m2+mσ)-space



Prefix Pruning

The full dynamic program is still slow


What if we go back to hamming distance, but still use the BWT



Prefix Pruning

define Branch(d,k,[i...j]): 
for c ∈ idx.enumerateRight(i,j) do 

if p[d] ≠ c do 
    k = k-1 
if k ≥ 0 do 

if d = m do 
output locations in [i,j] 

   else 
Branch(d+1, k, idx.extendRight(c,[i,j]))

O(mσ)-time
O(mσ)-space



Approximate Overlaps

If we're not given a reference genome, we are left to do de novo assembly.


The first step is known as overlap mapping.


Given a set of reads R = {R1,R2,...,Rd} find the set of suffix-prefix overlaps 
(Ri,Rj,oij). 
•Search is performed using the reverse BWT for T = R1$1R2$2R3$3...Rd$d$



Paired-end reads

We mentioned previously that many times reads come in pairs from the 
sequencer


These pairs can be used to determine exactly where a read maps (in the 
case of reads that can be placed in multiple locations)


Mapping can be done independently (useful for large scale change 
detection), but can also be performed together

•Search performed using the suffix array of the genome, which is large



Split alignment of reads

In RNA-Sequencing (RNA-Seq) the reads will have the introns removed, 
meaning there will be large gaps in the mapping position on the genome


If we have a complete transcriptome (all possible spliced transcripts), we 
could map reads to that, but we may not have it 


There is no clean solution to this, possibilities include:

•find all error free regions of a read, piece them together if the distances 
are reasonable

•predict exon boundaries in the read, then align those contiguous regions



Bowtie
Langmead, Trapnell, Pop, Salzberg 2009


 



FM-Index

The "BWT Index" discussed previously is also called the "FM Index"

•Originally defined by Ferragina and Manzini in 2000/2005


Reminder that the BWT/FM-index is:

•A data structure for a sting T containing

•BWTT$ encoded as a wavelet tree

•an integer array C continuing the counts of each character from Σ in T



Refresher on BWTs
Can be constructed using the 
last character of the 
lexicographic order of all 
cyclic rotations of the text


Encodes the original text, 
which can be recovered by a 
walk in the sequence


Searching for patterns is done 
back to front using similar 
techniques to sequence 
recovery



Using a BWT to Align Reads

The BWT and FM-Index are insufficient for aligning reads since it doesn't 
allow for errors


Previously mentioned some method to overcome this


Bowtie assumes all changes are single point changes (i.e. mismatches only)

•They use a backtracking search to find matching locations

•The quality scores are used to prioritize alignments

•Other speed-ups are included to ensure all matching locations are found



Backtracking

Start by matching the exact sequence


If the algorithm reaches a point with no 
matches swap out characters already 
matched and restart search from that there


When ties occur, start with the character 
with the lowest quality score, keep the rest 
in a stack


Keep track of how many changes are made

"Bowtie conducts a quality-aware, greedy, randomized, depth-first search through the space of possible alignments."



Backtracking Options
The user specifies the sum of the quality scores that can be changed

•this means that a mapping can have lots of low quality replacements, or

•one medium quality change 


Bowtie outputs the first valid alignment by default (within the specified constraints)

•can be modified to complete the backtracking and return the "best" alignment

•2x-3x slower to do this


User can specify a number of alignments to consider

•default is to use only one

•might want the two best alignments

•2 alignments is ~2x slower than using only 1



Excessive Backtracking

In low quality reads, lots of time may be spent backtracking since there are 
many possible changes at low quality positions. 


They mitigate this by creating two indexes (as we saw previously), one for 
the forward and one for the reverse of the string

•the backtracking is performed somewhat simultaneously on both index 
as we will see next


One other step they take is to concentrate on the "high-quality" end of a 
read (the first 28 characters read) which is most reliable



Phased Search
Split the seed (first 28 bases) into two parts, hi-half and lo-
half


Assume we're allowing 2 changes in the seed, a good 
alignment will have either: 


1. no mismatches

2. no mismatches in hi-half, 1 or 2 mismatches in lo-half

3. 1 or 2 mismatches in hi-half, no mismatches in lo-half

4. 1 mismatch in hi-half, 1 mismatch in lo-half

Phase 1 uses the mirror index and invokes the aligner to find alignments for cases 1 & 2. 

Phases 2 and 3 cooperate to find alignments for case 3: 


Phase 2 finds partial alignments with mismatches only in the hi-half, and 

phase 3 attempts to extend those partial alignments into full alignments. 


Finally, phase 3 invokes the aligner to find alignments for case 4. 



Phased search with reverse strand

Since both the read and its reverse 
complement are possibilities for ma match, 
need to consider both. 


Phases 2-4 here map to phases 1-3 
previously. 



Performance

Maq (Li, Ruan, Durban 2008), SOAP (Li, Li, Kristiansen, Wang 2008) the 
leading competitors at the time


Both used hashing to find potential mapping locations



Performance
Platform CPU time Wall clock 

time
Reads mapped 
per hour (millions)

Peak virtual memory 
footprint (megabytes)

Bowtie 
speed-up

Reads 
aligned (%)

Bowtie -v 2
Server

15 m 7 s 15 m 41 s 33.8 1,149
351×

67.4

SOAP 91 h 57 m 35 s 91 h 47 m 46 s 0.10 13,619 67.3

Bowtie
PC

16 m 41 s 17 m 57 s 29.5 1,353
59.8×

71.9

MAQ 17 h 46 m 35 s 17 h 53 m 7 s 0.49 804 74.7

Bowtie
Server

17 m 58 s 18 m 26 s 28.8 1,353
107×

71.9

MAQ 32 h 56 m 53 s 32 h 58 m 39 s 0.27 804 74.7



Take Aways

Bowtie was (at the time) the fastest short read aligniner


Used a one-time index based on a BWT that could be reused (novel at the 
time) 


Is able to run on a standard PC


When first published didn't use mate-pair information
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