De Brujin Graph,
 Overlap-Layout-Consensus, \& de novo assembly
 CS 4390/5390

De Brujin graphs

though we call them De Brujin graphs they were independently described by Nicolaas Govert de Bruijn and Irving John Good in 1946
they are used to encode sequence information as paths in a graph
Definition a k-order de Brujin Graph (DBG) $D=(V, E)$ has:
$\cdot V=\Sigma^{k}--$ there is a vertex for each possible k-mer
$\cdot E=\left\{a x \rightarrow x b \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\right\}-$ for each ($k+1$)-mer $a x b$, there is an edge from the k-mer $a x$ to the k-mer $x b$

De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) $D=(V, E)$ has:

- $V=\Sigma^{k}--$ there is a vertex for each possible k-mer
$\cdot E=\left\{a x \rightarrow x b \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\right\}$-- for each ($k+1$)-mer axb, there is an edge from the k-mer $a x$ to the k-mer $x b$

De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) $D=(V, E)$ has:

- $V=\Sigma^{k}$-- there is a vertex for each possible k-mer
$\cdot E=\left\{a x \rightarrow x b \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\right\}-$ for each $(k+1)$-mer $a x b$, there is an edge from the k-mer $a x$ to the k-mer $x b$

Each node has σ outgoing edges, and σ incoming edges

De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) $D=(V, E)$ has:

- $V=\Sigma^{k}$-- there is a vertex for each possible k-mer
$\cdot E=\left\{a x \rightarrow x b \mid a, b \in \Sigma, x \in \Sigma^{(k-1)}\right\}-$ for each $(k+1)$-mer $a x b$,
there is an edge from the k-mer $a x$ to the k-mer $x b$

Any string over the alphabet can be encoded as a path on the DBG

Example: 1011000

Other properties for DBGs we won't use for assembly

the de Brujin of order k is a line graph of the debrujin graph of order $k-1$

Other properties for DBGs we won't use for assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it contains all k-mers exactly once

Other properties for DBGs we won't use for assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it contains all k-mers exactly once

- or the Eulerian path of the graph of $k-1$

Other properties for DBGs we won't use for assembly

a decycling set of edges a de Brujin graph is a set of nodes that when removed leave a DAG
-this set of k-mers is guaranteed to exist in all long enough sequences

Can you find a length 6 binary sequence, which does not intersect one of the red k-mers?

Other properties for DBGs we won't use for assembly

a decycling set of edges a de Brujin graph is a set of nodes that when removed leave a DAG
-this set of k-mers is guaranteed to exist in all long enough sequences

Can you find a length 6 binary sequence, which does not intersect one of the red k-mers?

DBG for DNA

What we have seen in the previous slides was the DBG for $\Sigma=\{1,0\}$
For DNA $(\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{T}, \mathrm{G}\})$ the graph is a little more complicated

Sequence de Brujin Graphs

What is most commonly used in practice for genome assembly is a subset of the DBG based on a given sequence

This is sometimes in literature referred to as simply a de Brujin Graph

Sequence de Brujin Graphs

What is most commonly used in practice for genome assembly is a subset of the DBG based on a given sequence

This is sometimes in literature referred to as simply a de Brujin Graph

Sequence de Brujin Graphs

Casting assembly as Eulerian walk is appealing, but not practical
Uneven coverage, sequencing errors, etc make graph non-Eulerian
Even if graph were Eulerian, repeats yield many possible walks

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn graph, where walk contains each read as a subwalk

Proven NP-hard!
Medvedev, Paul, et al. "Computability of models for sequence assembly." Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: De Bruijn graph (DBG) assembly

Overlap Layout Consensus

Finding overlaps

Overlap: Suffix of X of length $\geq l$ matches prefix of $Y ; l$ is given

Naive: look in X for occurrences of Y 's length- l prefix. Extend matches to the right to confirm whether entire suffix of X matches.

See suffixPrefixMatch function in HW5 Q4 (Assembly Challenge)

Finding overlaps

With suffix tree?
Given a collection of strings S, for each string x in S find all overlaps involving a prefix of x and a suffix of another string y

Finding overlaps with suffix tree

Generalized suffix tree for $\{$ "GACATA", "ATAGAC" $\} \quad$ GACATA\$_ATAGAC\$1

Finding overlaps with suffix tree

Generalized suffix tree for $\{$ "GACATA", "ATAGAC" $\} \quad$ GACATA\$_ATAGAC\$1

GACATA
III
ATAGAC

Finding overlaps with suffix tree

Generalized suffix tree for \{"GACATA","ATAGAC" $\}$

Strategy:

(1) Build tree
(2) For each string: Walk down from root and report any outgoing edge labeled with a separator. Each corresponds to a prefix/suffix match involving prefix of query string and suffix of string ending in the separator.

Finding overlaps with suffix tree

Say there are d reads of length n, total length $N=d n$, and $a=$ \# read pairs that overlap

Assume for given string pair we report only the longest suffix/prefix match
Time to build generalized suffix tree: $O(N)$
... to walk down red paths: $\quad \mathrm{O}(N)$
... to find \& report overlaps (green): $\quad \mathrm{O}(a)$
Overall: $\quad \mathrm{O}(N+a)$

Finding overlaps

What about approximate suffix/prefix	$X:$ CTCGGCCCTAGG				
matches?	$Y:\\| \\|\\| \\|$				
	$Y:\\| \\| C T A G G C C C$				

Dynamic programming

Finding overlaps with dynamic programming

```
X: CTCGGCCCTAGG
    || ||||
    GGCTCTAGGCCC
```

Use global alignment recurrence and score function

$$
D[i, j]=\min \left\{\begin{array}{l}
D[i-1, j]+s(x[i-1],-) \\
D[i, j-1]+s(-, y[j-1]) \\
D[i-1, j-1]+s(x[i-1], y[j-1])
\end{array}\right.
$$

$s(a, b)$					
	A	C	G	T	-
A	0	4	2	4	8
C	4	0	4	2	8
G	2	4	0	4	8
T	4	2	4	0	8
-	8	8	8	8	

How do we force it to find prefix / suffix matches?

Finding overlaps with dynamic programming

Y
How to initialize first row $\&$ column so suffix of X aligns to prefix of Y ?

First column gets $0 s$ (any suffix of X is possible)

First row gets ∞ s
(must be a prefix of Y)
Backtrace from last row

		G	G	C	T	C		A	G	G	C	C	C
	0	∞											
C	0	4	12	20	X: CTCGGCCCTAGG								
T	0	4	8	14									
C		4	8	8									
G	0	9	4	12									
G	0	0	?	8									
C	0	4	4	?	8	16	18	26	30	34	36	44	52
C	0	4	8	4	2	8	16	22	30	34	34	36	44
C	0	4	8	8	6	2	10	18	26	34	34	34	36
T	0	4	8	10	8	8	2	10	18	26	34	36	36
A	0	2	6	12	14	12	10	2	10	18	26	34	40
G	0	0	2	10	16	18	16	10	?	10	18	26	34
G	0	0	0	6	14	20	22	18	10		10	18	26

Finding overlaps with dynamic programming

Say there are d reads of length n, total length $N=d n$, and a is total number of pairs with an overlap

```
# overlaps to try: O(d
Size of each DP matrix: O( n}\mp@subsup{n}{}{2
Overall: O}(\mp@subsup{d}{}{2}\mp@subsup{n}{}{2}),\mathrm{ or O(N2
```

Contrast $\mathrm{O}\left(N^{2}\right)$ with suffix tree: $\mathrm{O}(N+a)$, but where a is worst-case $\mathrm{O}\left(d^{2}\right)$
Real-world overlappers mix the two; index filters out vast majority of non-overlapping pairs, dynamic programming used for remaining pairs

Overlap Layout Consensus

Layout

Overlap graph is big and messy. Contigs don't "pop out" at us.
Below: part of the overlap graph for
to_every_thing_turn_turn_turn_there_is_a_season
$l=4, k=7$

Layout

Anything redundant about this part of the overlap graph?

Some edges can be inferred (transitively) from other edges
E.g. green edge can be inferred from blue

Layout

Remove transitively inferrable edges, starting with edges that skip one node:

Before:

Layout

Remove transitively inferrable edges, starting with edges that skip one node:

After:

Layout

Now remove edges that skip one or two nodes:

After:

Even simpler

Layout

Emit contigs corresponding to the non-branching stretches

Layout

Must handle subgraphs that are spurious, e.g. because of sequencing error

Mismatch could be due to sequencing error or repeat. Since the path through \mathbf{b} ends abruptly we might conclude it's an error and prune \mathbf{b}.

Overlap Layout Consensus

Consensus

Take reads that make up a contig and line them up

Take consensus, i.e. majority vote

Complications: (a) sequencing error, (b) ploidy

Overlap Layout Consensus

OLC drawbacks
Building overlap graph is slow. We saw $\mathrm{O}(N+a)$ and $\mathrm{O}\left(N^{2}\right)$ approaches.
Overlap graph is big; one node per read, \# edges can grow superlinearly with \# reads

Sequencing datasets are ~ 100 s of millions or billions of reads

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: De Bruijn graph (DBG) assembly

Some quick terminology

DNA is sequences into short reads which are parts of the sequence, which are assembled into contiguous unambiguous sections, or contigs, which are not typically the full length of the original sequence.

Using paired-end reads, we can construct a scaffold which tell us how far apart the contigs should be with some unknown sequence in the middle (of somewhat known length).

Scaffolding: paired-end sequencing

Example fragment length distribution

Fragments are not exactly the same length, but there's a clear peak around 250 nt , very few $<150 \mathrm{nt}$ or $>300 \mathrm{nt}$

Fragment Size Distribution

Scaffolding: paired-end sequencing

Say we have a collection of pairs and we assemble them as usual
Assembly yields two contigs:

Scaffolding: paired-end sequencing

What does this tell us?
Contig 1 is close to contig 2 in the genome
In fact, we can estimate distance between contigs using what we know about fragment length distribution

The more spanning pairs we have, the better our estimate

Scaffolding: paired-end sequencing

What does the picture look like if contigs 1 and 2 are close, but we assembled contig 2 "backwards" (i.e. reverse complemented)

Pairs also tell us about contigs' relative orientation

Scaffolding

Scaffolding output: collection of scaffolds, where a scaffold is a collection of contigs related to each other with high confidence using pairs

Some quick terminology

DNA is sequences into short reads which are parts of the sequence, which are assembled into contiguous unambiguous sections, or contigs, which are not typically the full length of the original sequence.

Using paired-end reads, we can construct a scaffold which tell us how far apart the contigs should be with some unknown sequence in the middle (of somewhat known length).

The N50 value of an assembly, is the size of the contig such that half of the total size of the assembled sequences is in smaller contigs. Specifically:
assuming the k contigs $c_{1}, c_{2}, \ldots, c_{k}$ are sorted.

N50

Assuming increasing k-mer sizes are used and sequencing is perfect, this is how large the conigs are expected to be

short oligonucleotide alignment program, de novo (SOAPdenovo)

Resource
De novo assembly of human genomes with massively parallel short read sequencing

Ruiqiang Li, ${ }^{1,2,3}$ Hongmei Zhu, ${ }^{1,3}$ Jue Ruan, ${ }^{1,3}$ Wubin Qian, ${ }^{1}$ Xiaodong Fang, ${ }^{1}$ Zhongbin Shi, ${ }^{1}$ Yingrui Li, ${ }^{1}$ Shengting Li, ${ }^{1}$ Gao Shan, ${ }^{1}$ Karsten Kristiansen, ${ }^{1,2}$ Songgang Li, ${ }^{1}$ Huanming Yang, ${ }^{1}$ Jian Wang, ${ }^{1}$ and Jun Wang ${ }^{1,2,4}$
${ }^{1}$ Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China; ${ }^{2}$ Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark

Sequencing and error correction

The first step taken in this (and several algorithms of this type) is readerror correction.

Correct k-mers are going to appear multiple times in the reads set

- random sequencing error-containing k-mers have low frequency

Build a hash table to store the frequency of all 17-mers

- for each read, start from the high-frequency regions and extended both sides to infer potential erroneous sites of low-frequency (<3) 17-mers
-for each inferred erroneous site, test the impact of changing it to the other three allele types
- accept if all overlapping k-mers had a frequency equal to or over 3

Dynamic programming was used to find the optimal solution with minimal changes

Graph correction

Tips

- any path that is a "dead end" and less <2k in length is removed

Low Coverage Links

- any node that is only in 1 read should be removed

Tiny Repeats

- if shorter than a read length, use a read to resolve the repeated sequence paths

Bubbles

- if the two paths only have one base change, or 90% identity remove the lower coverage path

Initial Contigs

Remaining repeat sections are split into separate contigs

Scaffold Construction

Reads are remapped onto the contigs
-the reads and their mate pair create a graph connecting them

Then the graph is linearized by:

- grouping compatible transitive links
- unresolvable repeat structures are masked (i.e. replaced with unknown characters for a specific length)

When possible, polish the gaps by finding read pairs that map to known sections on one end and
 the repeat section on another

The final assemblies

Data set	Step	Sequence depth	N50 (bp)	N90 (bp)	Total length	Genome coverage
Asian genome	Contig	$52 \times$	1050	205	$2,146,837,026$	80.3%
	Scaffold (135\&440bp PE)	$26 \times$	17,331	3838	$2,510,643,840$	80.3%
	Scaffold (+2.6 kb PE)	$5 \times$	103,474	21,431	$2,718,204,301$	80.3%
	Scaffold (+6 kb PE)	$4 \times$	230,544	47,127	$2,800,570,159$	80.3%
	Scaffold (+9.6 kb PE)	$2 \times$	446,283	78,405	$2,874,204,399$	80.3%
African genome						

All read sequences were used in contig assembly, while paired-end libraries with different insert sizes were used step-by-step additively on scaffold construction. N50 of contig or scaffold was calculated by ordering all sequences, then adding the lengths from longest to shortest until the summed length exceeded 50% of the total length of all sequences. N90 is similarly defined. NCBI build 36.1 was used as the reference genome and RefSeq was used as the gene set to evaluate genome and gene region coverage. Since both genomes were sequenced of male individuals, chromosomes X and Y only have half-sequencing depths of the autosomes, and hence were excluded in calculation genome and gene coverage. For calculating scaffold N50 and total length, the intrascaffold gaps were included.

Compute time

Table 4. Statistics of computational complexity at each assembly step

	Human African			Human Asian		
Step	Peak memory (Gb)	No. of CPUs	Time (h)	Peak memory (Gb)	No. of CPUs	Time (h)
Preassembly error correction	96	40	22	96	40	24
Construct de Bruijn graph	140	16	8	140	16	10
Simplify graph and output contigs	62	1	3	108	1	6
Remap reads	43	8	2	74	8	4
Scaffolding	23	1	4	15	1	3
Gap closure	35	8	1	53	8	1
Total	140	-	40	140	-	48

The assemblies were performed on a supercomputer with eight Quad-core AMD 2.3 GHz CPUs with 512 Gb of memory installed, and used the Linux operating system.

Supplementary table 2. Statistics of contig size by graph simplification step by step.

Step	Longest (bp)	N50 (bp)	N90 (bp)
Initial de Bruijn graph	425	29	25
Tips clipped	3,836	29	25
Low-coverage removed	3,946	32	25
Tiny repeats solved	15,933	54	25
Bubbles merged	18,483	127	25
Contigs (>=100bp)	18,483	1,050	205

