
Alignment-free genomics

Sequence Search

1Boyer, R.S.; Moore, J.S. (October 1977). "A Fast String Searching Algorithm". Comm. ACM. New York, NY, USA: Association for Computing Machinery. 20 (10): 762–772

2Knuth, D; Morris, J H.; Pratt, V (1977). "Fast pattern matching in strings". SIAM Journal on Computing. 6 (2): 323–350

image: Gusfield, D. Algorithms on Strings, Trees and Sequences. 1997. Figure 1.1

Sequence Search

Given a pattern p and a text q, find p in q
• naive solution is O(mn) time, m=|p|, n=|q|

• improved to O(n+m) by Boyer and More1

• later O(n) by Knuth, Morris and Pratt2

1Boyer, R.S.; Moore, J.S. (October 1977). "A Fast String Searching Algorithm". Comm. ACM. New York, NY, USA: Association for Computing Machinery. 20 (10): 762–772

2Knuth, D; Morris, J H.; Pratt, V (1977). "Fast pattern matching in strings". SIAM Journal on Computing. 6 (2): 323–350

image: Gusfield, D. Algorithms on Strings, Trees and Sequences. 1997. Figure 1.1

Sequence Search

Given a pattern p and a text q, find p in q
• naive solution is O(mn) time, m=|p|, n=|q|

• improved to O(n+m) by Boyer and More1

• later O(n) by Knuth, Morris and Pratt2

What if n is very large?

1Boyer, R.S.; Moore, J.S. (October 1977). "A Fast String Searching Algorithm". Comm. ACM. New York, NY, USA: Association for Computing Machinery. 20 (10): 762–772

2Knuth, D; Morris, J H.; Pratt, V (1977). "Fast pattern matching in strings". SIAM Journal on Computing. 6 (2): 323–350

image: Gusfield, D. Algorithms on Strings, Trees and Sequences. 1997. Figure 1.1

Suffix Trie/Tree

image: Gusfield, D. Algorithms on Strings, Trees and Sequences. 1997. Figure 5.1 (modified)

P = abx

Q = xabxac

 123456

Suffix Trie/Tree
Let T be a rooted tree

• where each edge is labeled by a

distinct character a ∈ Σ, and

• each leaf l labels a suffix of q such

concatenating the labels of the edges
from the root to p form the suffix.

• Finding p in T takes O(m)-time.

• Finding all instances is also faster.

• Requires Θ(n|Σ|) space!

image: Gusfield, D. Algorithms on Strings, Trees and Sequences. 1997. Figure 5.1 (modified)

P = abx

Q = xabxac

 123456

Suffix Trie/Tree
Let T be a rooted tree

• where each edge is labeled by a

distinct character a ∈ Σ, and

• each leaf l labels a suffix of q such

concatenating the labels of the edges
from the root to p form the suffix.

• Finding p in T takes O(m)-time.

• Finding all instances is also faster.

• Requires Θ(n|Σ|) space!

But, what if n = 3,000,000,000?

image: Gusfield, D. Algorithms on Strings, Trees and Sequences. 1997. Figure 5.1 (modified)

P = abx

Q = xabxac

 123456

Suffix Arrays

Store two arrays

• pos(i)— which are the start position of

suffixes in lexicographic order, and

• lcp(i,j)— which stores the longest

common prefix between positions i and j.

• Takes O(n) space.

• Search can be conducted in O(m + log n)-time.

pos lcp

0 12 $

1 11 0 i$

2 8 1 ippi$

3 5 1 issippi$

4 2 4 ississippi$

5 1 0 misssissippi$

6 10 0 pi$

7 9 1 ppi$

8 7 0 sippi$

9 4 2 sissippi$

10 6 1 ssippi$

11 3 3 ssissippi$

Burrows-Wheeler Transform
$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

Burrows-Wheeler Transform

Store the last column of the rotated sorted suffix list

• Can be easily compressed because of the repetitiveness

• When used along with the genomic sequence can quickly

recover the original sequence

• Ferrangina and Manzini later made advances for faster

search

$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

Burrows-Wheeler Transform

Store the last column of the rotated sorted suffix list

• Can be easily compressed because of the repetitiveness

• When used along with the genomic sequence can quickly

recover the original sequence

• Ferrangina and Manzini later made advances for faster

search

What if we want to find positions with some changes?

$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

Alignment
Given

• two sequences p and q over an alphabet Σ, and

• an alignment objective function.

Find an m x 2 matrix (m > max(|p|,|q|))

• where each row represents one of the sequences with inserted gap

characters (‘-’ ∉ Σ), and

• is optimal under the objective function.

G-ATTACA
GCA-TGCT

p = GATTACA
q = GCATGCT

Alignment
Can be solved in

• O(|p| |q|) time using Needleman–Wunsch

algorithm1

• Extended to local alignment by Smith and
Waterman2

With local alignment, easily find the best location
of a small string within another even if there are
errors.

1Needleman, Saul B. & Wunsch, Christian D. (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins". Journal of
Molecular Biology. 48 (3): 443–53
2Smith, Temple F. & Waterman, Michael S. (1981). "Identification of Common Molecular Subsequences" . Journal of Molecular Biology. 147: 195–197

T

source:wikicommons

Seed and Extend

Given a pattern p and a text q, find p in q
• select a substring p’ from p
• search for p’ in q using an exact search method

• only perform alignment on a small region around

locations of p’

• Requiring multiple seeds can further reduce

search locations and/or increase the number of
errors allowed

Seed

p

q

Quasi-alignment

Given a pattern p and a text q, find p in q
• by first finding the set P of all overlapping

subsequences of length k
• find the locations of p’ in P in q
• if there is a region where a large percentage

of P are found very close call that location a
location of p.

p

q

P}

aligns with one small difference

k-mer Counting

For a given sequence q and value k
• determine the list of unique k-length strings in q, and

• count the frequency of each.

• Can be used to quickly compare two sequences.

• Problems arise in keeping the hash table  

(naively Σk entries)

q = xabxyabxyabxz

k = 3

abx 3

bxy 2

bxz 1

xab 1

xya 2

yab 2

count

Minimizer schemes

Given a string q, and values k and w
• for each substring of w k-mers

• only select the minimum.

• This reduces the total number of k-mers that

must be considered.

• Changing the ordering can impact the number

of unique k-mers.

q = xabxyabxyabxz

k = 3

w = 2

abx 3 3

bxy 2 2

bxz 1 0

xab 1 0

xya 2 2

yab 2 0

count
minimizer

count

Metagenomics

Given a group of sequences Q
• group q in Q so similar sequences are from

the same (possibly unknown) organism.

• Similarity can be measured using edit

distance (alignment), k-mer counts, etc.

1
2
5
0
0
2
1
0

2
5
0
9
0
1
0
4

7
5
3
0
0
1
0
2

2
4
1
8
0
1
2
2

q1 q2

q3 q4

P = abx

Q = xabxac

 123456

pos lcp

0 12 $

1 11 0 i$

2 8 1 ippi$

3 5 1 issippi$

4 2 4 ississippi
$5 1 0 misssissip
pi$6 10 0 pi$

7 9 1 ppi$

8 7 0 sippi$

9 4 2 sissippi$

10 6 1 ssippi$

11 3 3 ssissippi$

$mississippi
i$mississipp
ippi$mississ
issippi$miss
ississippi$m
mississippi$
pi$mississip
ppi$mississi
sippi$missis
sissippi$mis
ssippi$missi
ssissippi$mi

T
p

q

P}

aligns with one small difference

q = xabxyabxyabxz

k = 3

abx 3

bxy 2

bxz 1

xab 1

xya 2

yab 2

Naive sequence search Suffix trees Suffix arrays BWT

Alignment Quasi-alignment k-mer counting

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

O(mn) time for each pair!

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

When sorted exact matches
appear together and can be

mapped easily

O(n) k-mers per
sequence!

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais

Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

Store exactly every wth mer

Storage and comparisons
reduced by factor of 1/w

Slide adapted from those of Guillaume Marçais

Minimizers

Store exactly every wth mer

Large overlap,  
no matched k-mers

Storage and comparisons
reduced by factor of 1/w

How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

S = 1000100101

111

110

101

100

011

010

001

000

k = 3

w = 3

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais

Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Density of an order o

d(o, S, k) =
of selected positions

|S|� k + 1

Slide adapted from those of Guillaume Marçais

Minimizers

Slide adapted from those of Guillaume Marçais

Minimizers

Slide adapted from those of Guillaume Marçais

Universal hitting set
A universal set Uk,w is
• a set of k-mers such that

• all string of length w+k-1 contains one k-mers from the set

• that minimizes the size of the set.

• Found using the de Brujin graph of k-mers by first selecting nodes that

intersect all cycles (decycling)

• then additional nodes to intersect long paths.

Slide adapted from those of Guillaume Marçais

Universal hitting set
A universal set Uk,w is
• a set of k-mers such that

• all string of length w+k-1 contains one k-mers from the set

• that minimizes the size of the set.

• Found using the de Brujin graph of k-mers by first selecting nodes that

intersect all cycles (decycling)

• then additional nodes to intersect long paths.

Universal set ordering

• Given a universal set Uk,w
• rank all k-mers from the set lower than any other.

Slide adapted from those of Guillaume Marçais

Universal hitting set

Slide adapted from those of Guillaume Marçais

Minimizers
Density for human chromosome 19, k=7, w=11

Slide adapted from those of Guillaume Marçais

Lempel-Ziv Complexity

Let the distance between strings be

• compressibility of the concatenated string

• compared to them individually compressed.

• Similar strings will have a higher

compression ratio.

Zielezinski,

image source: Zielezinski, et al. Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biology. 2017.

Kullback-Leibler distance

Use the difference in information content
to determine the distance between
strings.

image source: Zielezinski, et al. Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biology. 2017.

Metagenomics

• Normally one experiment -> one organism

• Multiple organisms makes for a harder problem

• Not knowing what possible species are there makes it harder still

Metagenomics

Given a set of sequences Q
• group similar sequences together.

• Equivalent to the classical problem of clustering.

• Distance metrics become important.

Metagenomics
Given a set of sequences, compute all of the pairwise distance

?

?

?

?

??

? ?

???
?

? ?

?

?

Metagenomics

Once the data is clustered

• identify certain groups

• assemble clusters

• generate phylogeny

• ….

image source: Laczny, et al. Alignment-free Visualization of Metagenomic
Data by Nonlinear Dimension Reduction Scientific Reports, 2014

Metagenomics Tools
Table 1 Alignment-free sequence comparison tools available for next-generation sequencing data analysis (Continued)

https://sourceforge.net/
projects/trowel-ec/

Metagenomics Assembly-free
phylogenomics

AAF Phylogeny reconstruction directly from
unassembled raw sequence data from
whole genome sequencing projects;
provides bootstrap support to assess
uncertainty in the tree topology (k-mer
based)

Software
(Python)

[78] https://github.com/
fanhuan/AAF

kSNP v3 Reference-free SNP identification and
estimation of phylogenetic trees using
SNPs (based on k-mer analysis)

Software (C) [80, 81] https://sourceforge.net/
projects/ksnp/files/

NGS-MC Phylogeny of species based on NGS
reads using alignment-free sequence dis-
similarity measures d2* and d2

S under dif-
ferent Markov chain models (using k-
words)

R package [79, 160] http://www-rcf.usc.edu/
~fsun/Programs/NGS-MC/
NGS-MC.html

Species
identification/
taxonomic
profiling

CLARK Taxonomic classification of metagenomic
reads to known bacterial genomes using
k-mer search and LCA assignment

Software (C++) [84] http://clark.cs.ucr.edu/

FOCUS Reports organisms present in
metagenomic samples and profiles their
abundances (uses composition-based ap-
proach and non-negative least squares
for prediction)

Web service
Software
(Python)

[161] http://edwards.sdsu.edu/
FOCUS/

GSM Estimation of abundances of microbial
genomes in metagenomic samples (k-
mer based)

Software (Go) [162] https://github.com/
pdtrang/GSM

Mash Species identification using assembled or
unassembled Illumina, PacBio, and ONT
data (based on MinHash dimensionality-
reduction technique)

Software (C++) [163] https://github.com/marbl/
mash

Kraken Taxonomic assignment in metagenome
analysis by exact k-mer search; LCA
assignment of short reads based on a
comprehensive sequence database

Software (C++) [83] https://ccb.jhu.edu/
software/kraken/

LMAT Assignment of taxonomic labels to reads
by k-mers searches in precomputed
database

Software (C+
+/Python)

[82] https://sourceforge.net/
projects/lmat/

stringMLST k-mer-based tool for MLST directly from
the genome sequencing reads

Software
(Python)

[86] http://
jordan.biology.gatech.edu/
page/software/stringMLST

Taxonomer k-mer-based ultrafast metagenomics tool
for assigning taxonomy to sequencing
reads from clinical and environmental
samples

Web service [164] http://taxonomer.iobio.io/

Other d2-tools Word-based (k-tuple) comparison
(pairwise dissimilarity matrix using d2S
measure) of metatranscriptomic samples
from NGS reads

Software
(Python/R)

[56, 165] https://code.google.com/
p/d2-tools/

VirHostMatcher Prediction of hosts from metagenomic
viral sequences based on ONF using
various distance measures (e.g., d2)

Software (C++) [153] https://github.com/
jessieren/VirHostMatcher

MetaFast Statistics calculation of metagenome
sequences and the distances between
them based on assembly using de Bruijn
graphs and Bray–Curtis dissimilarity
measure

Software (Java) [166] https://github.com/ctlab/
metafast

The up-to-date list of currently available programs can be found at http://www.combio.pl/alfree/tools/. Accessed 23 August 2017
LCA lowest common ancestor, NGS next-generation sequencing, SNP single-nucleotide polymorphism, SNV single-nucleotide variant

Zielezinski et al. Genome Biology (2017) 18:186 Page 7 of 17

image source: Zielezinski, et al. Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biology. 2017.

Sailfish
02-715 

6 February 2018

Why?
Quantification is used for
•differential expression

•disease sub-typing, and

•cancer progression analysis

Alignment-free
Alignment is slow

Alignment-free
Alignment is slow

Why else?

Alignment-free
Alignment is slow

Why else?
•Error tolerance

Alignment-free
Alignment is slow

Why else?
•Error tolerance
•Storage size

-Sailfish on human = 3.1G
-Bowtie alignment = 15.5G

Alignment-free
Alignment is slow

Why else?
•Error tolerance
•Storage size

-Sailfish on human = 3.1G
-Bowtie alignment = 15.5G

•Memory usage

The Index
The index is the key it contains
•a perfect hash of k-mers (in T) to indices

•a count of k-mer use

•maps from T to k-mers and vice versa

Equivalence Classes
An equivelence class is
•all k-mers

•that appear in the same set of transcripts

•with the same frequency

For k=20 and the human experiment
•number of k-mers: 4^20 = 2^40 = 1,099,511,627,776

•number of k-mers in the human transcriptome = 60,504,111

•number of k-mers in the human read set = 39,393,132

•number of distinct equivalence classes = 151,385 
 (0.38%)

EM

Initial μ’

Why is li’ = l - k + 1 ?

Bias Correction
Expression prediction can be impacted by
•fragment length

•CG content

•dinucleotide frequency

Corrections are made following
procedures in Zeng, et al. (2011)
•measure length, GC and DN frequency

•find PCs for GC and DN

•fit a correction function

ex
pr

es
si

on

Real Data

k-mers per kilobase,
per million mapped k-mers

Simulation

Take Aways
What was new
•alignment-free quantification is fast

•similar accuracy to alignment-based methods

•EM efficiently takes care of multi-mapped reads

•single input parameter

Problems
•biases are not addressed fully

Going beyond k-mer counts
kallistoSalmon

Patro, et al. Nature Biotechnology, 2017
Srivastava, et al. Bioinformatics, 2016 Bray, et al. Nature Biotechnology, 2016

Advanced Bias Correction
Salmon extends the BC from Sailfish
•considers 5’- and 3’- sequencing bias

•fragment-level GC bias

•length-bias

Accuracy of new methods

Suggested Reading
Metagenomics

• G. G. Z. Silva, D. A. Cuevas, B. E. Dutilh, and R. A. Edwards, “FOCUS: an alignment-free model to identify organisms in metagenomes using

non-negative least squares,” PeerJ, vol. 2, no. 4, p. e425, Jun. 2014.

• W. Liao, J. Ren, K. Wang, S. Wang, F. Zeng, Y. Wang, and F. Sun, “Alignment-free Transcriptomic and Metatranscriptomic Comparison

Using Sequencing Signatures with Variable Length Markov Chains,” Scientific Reports, vol. 6, no. 1, p. 37243, Nov. 2016.

• Y. Y. Lu, K. Tang, J. Ren, J. A. Fuhrman, M. S. Waterman, and F. Sun, “CAFE: aCcelerated Alignment-FrEe sequence analysis,” Nucleic Acids

Research, vol. 45, no. 1, pp. W554–W559, Jul. 2017.

• S. Gao, D.-T. Pham, and V. Phan, “Alignment-free methods for metagenomic profiling,” BMC Bioinformatics, vol. 16, no. 15, p. P4, 2015.

• V. Popic, V. Kuleshov, M. Snyder, and S. Batzoglou, “GATTACA: Lightweight Metagenomic Binning With Compact Indexing Of Kmer

Counts And MinHash-based Panel Selection,” bioRxiv, p. 130997, Apr. 2017.

• B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren, and A. M. Phillippy, “Mash: fast genome and metagenome

distance estimation using MinHash,” Genome Biol., vol. 17, no. 1, p. 403, Jun. 2016.

• D. E. Wood and S. L. Salzberg, “Kraken: ultrafast metagenomic sequence classification using exact alignments,” Genome Biol., vol.

15, no. 3, p. R46, 2014.

• Y. Y. Lu, T. Chen, J. A. Fuhrman, and F. Sun, “COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-

alignment and paired-end read LinkAge,” Bioinformatics, vol. 33, no. 6, pp. 791–798, Mar. 2017.

• Y. Luo, Y. W. Yu, J. Zeng, B. Berger, and J. Peng, “Metagenomic binning through low density hashing,” bioRxiv, p. 133116, May 2017.

• J. Kawulok and S. Deorowicz, “CoMeta: Classification of Metagenomes Using k-mers,” PLoS ONE, vol. 10, no. 4, p. e0121453, Apr. 2015.

• D.-T. Pham, S. Gao, and V. Phan, “An accurate and fast alignment-free method for profiling microbial communities,” Journal of Bioinformatics

and Computational Biology, vol. 15, no. 3, p. 1740001, Mar. 2017. (see me for the PDF)

• J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M. Tiedje, and C. T. Brown, “Scaling metagenome sequence assembly with probabilistic de

Bruijn graphs.,” Proceedings of the National Academy of Sciences, vol. 109, no. 33, pp. 13272–13277, Aug. 2012.

Suggested Reading
Quantification

• R. Patro, S. M. Mount, and C. Kingsford, “Sailfish enables alignment-free isoform quantification from

RNA-seq reads using lightweight algorithms,” Nature Biotechnology, vol. 32, no. 5, pp. 462–464, Apr.
2014.

• R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, “Salmon provides fast and bias-aware
quantification of transcript expression,” Nat. Methods, vol. 14, no. 4, pp. 417–419, Mar. 2017.

• Nicolas L Bray, Harold Pimentel, Páll Melsted and Lior Pachter, "Near-optimal probabilistic RNA-seq
quantification", Nature Biotechnology vol. 34, pp. 525–527, 2016.

• D. C. Wu, J. Yao, K. S. Ho, A. M. Lambowitz, C. O. Wilke, "Limitation of alignment-free tools in total RNA-seq
quantification", bioRxiv, 10.1101/246967 (review)

Minimizers

• H. Li, “Minimap2: fast pairwise alignment for long nucleotide sequences.” 04-Aug-2017.

• Y. Orenstein, D. Pellow, G. Marçais, R. Shamir, and C. Kingsford, “Compact Universal k-mer Hitting Sets,”

in Algorithms in Bioinformatics, vol. 9838, no. 10, Cham: Springer, Cham, 2016, pp. 257–268.

• G. Marçais, D. Pellow, D. Bork, Y. Orenstein, R. Shamir, and C. Kingsford, “Improving the performance of

minimizers and winnowing schemes,” bioRxiv, p. 104075, Jan. 2017.

Suggested Reading
Storage/Search

• S. Grabowski and M. Raniszewski, “Sampled suffix array with minimizers,” Software: Practice and Experience, vol. 47,

no. 11, pp. 1755–1771, Nov. 2017.

• C.-A. Leimeister, T. Dencker, and B. Morgenstern, “Anchor points for genome alignment based on Filtered Spaced Word

Matches.” 26-Mar-2017.

• L. Noé, “Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds,” Algorithms

Mol Biol, vol. 12, no. 1, p. 1, Dec. 2017.

• B. Solomon and C. Kingsford, “Fast search of thousands of short-read sequencing experiments,” Nature Biotechnology, vol. 34,

no. 3, pp. 300–302, Mar. 2016.

• G. Holley, R. Wittler, J. Stoye, and F. Hach, “Dynamic Alignment-Free and Reference-Free Read Compression,” in Research in

Computational Molecular Biology, vol. 10229, no. 7, S. C. Sahinalp, Ed. Cham: Springer International Publishing, 2017, pp. 50–
65.

• B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

• S. Grabowski, S. Deorowicz, and Ł. Roguski, “Disk-based compression of data from genome sequencing,” Bioinformatics, vol. 31,

no. 9, pp. 1389–1395, May 2015.

• G. Holley, R. Wittler, and J. Stoye, “Bloom Filter Trie – A Data Structure for Pan-Genome Storage,” in Algorithms in

Bioinformatics, vol. 9289, no. 16, Berlin, Heidelberg: Springer, Berlin, Heidelberg, 2015, pp. 217–230.

• C. Jain, A. Dilthey, S. Koren, S. Aluru, and A. M. Phillippy, “A Fast Approximate Algorithm for Mapping Long Reads to

Large Reference Databases,” in Research in Computational Molecular Biology, vol. 10229, no. 17, S. C. Sahinalp, Ed.
Cham: Springer International Publishing, 2017, pp. 66–81.

Suggested Reading
k-mer Counting

• S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “KMC 2: fast and resource-

frugal k-mer counting,” Bioinformatics, vol. 31, no. 10, pp. 1569–1576, May 2015.

• M. Erbert, S. Rechner, and M. Müller-Hannemann, “Gerbil: a fast and memory-efficient k -mer

counter with GPU-support,” Algorithms Mol Biol, vol. 12, no. 1, p. 9, Dec. 2017.

• T. Pan, P. Flick, C. Jain, Y. Liu, and S. Aluru, Kmerind: A Flexible Parallel Library for K-mer

Indexing of Biological Sequences on Distributed Memory Systems. New York, New York, USA:
ACM, 2016, pp. 422–433.

• G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers,” Bioinformatics, vol. 27, no. 6, pp. 764–770, Mar. 2011.

• N. Sivadasan, R. Srinivasan, and K. Goyal, “Kmerlight: fast and accurate k-mer abundance
estimation.” 19-Sep-2016.

• P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “Squeakr: An Exact and Approximate k-mer
Counting System,” bioRxiv, p. 122077, Mar. 2017.

Suggested Reading
Phylogeny

• M. Bogusz, S. W. S. biology, 2017, “Phylogenetic tree estimation with and without alignment: new

distance methods and benchmarking,” academic.oup.com, p. syw074, Sep. 2016.

• S. V. Thankachan, S. P. Chockalingam, Y. Liu, A. Krishnan, and S. Aluru, “A greedy alignment-

free distance estimator for phylogenetic inference,” BMC Bioinformatics, vol. 18, no. 8, p.
238, Jun. 2017.

Biological Prediction

• Y. Guo, K. Tian, H. Zeng, X. Guo, and D. K. Gifford, “A novel k-mer set memory (KSM) motif

representation improves regulatory variant prediction,” bioRxiv, p. 130815, Apr. 2017.

• F.-D. Pajuste, L. Kaplinski, M. Möls, T. Puurand, M. Lepamets, and M. Remm, “FastGT: an

alignment-free method for calling common SNVs directly from raw sequencing reads,” Scientific
Reports, vol. 7, no. 1, p. 589, May 2017.

Other

• A. Zielezinski, S. Vinga, J. Almeida, and W. M. Karlowski, “Alignment-free sequence comparison:

benefits, applications, and tools,” Genome Biol., vol. 18, no. 1, p. 186, Dec. 2017. (survey)

