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Sequence Search

Given a pattern p and a text q, find p in q
• naive solution is O(mn) time, m=|p|, n=|q|

• improved to O(n+m) by Boyer and More1

• later O(n) by Knuth, Morris and Pratt2
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Sequence Search

Given a pattern p and a text q, find p in q
• naive solution is O(mn) time, m=|p|, n=|q|

• improved to O(n+m) by Boyer and More1

• later O(n) by Knuth, Morris and Pratt2

What if n is very large?

1Boyer, R.S.; Moore, J.S. (October 1977). "A Fast String Searching Algorithm". Comm. ACM. New York, NY, USA: Association for Computing Machinery. 20 (10): 762–772
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Suffix Trie/Tree
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P = abx 

Q = xabxac

    123456




Suffix Trie/Tree
Let T be a rooted tree 

• where each edge is labeled by a 

distinct character a ∈ Σ, and

• each leaf l labels a suffix of q such 

concatenating the labels of the edges 
from the root to p form the suffix.


• Finding p in T takes O(m)-time.

• Finding all instances is also faster.

• Requires Θ(n|Σ|) space!
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Suffix Trie/Tree
Let T be a rooted tree 

• where each edge is labeled by a 

distinct character a ∈ Σ, and

• each leaf l labels a suffix of q such 

concatenating the labels of the edges 
from the root to p form the suffix.


• Finding p in T takes O(m)-time.

• Finding all instances is also faster.

• Requires Θ(n|Σ|) space!

But, what if n = 3,000,000,000?

image: Gusfield, D. Algorithms on Strings, Trees and Sequences. 1997. Figure 5.1 (modified)
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Suffix Arrays

Store two arrays 

• pos(i)— which are the start position of 

suffixes in lexicographic order, and

• lcp(i,j)— which stores the longest 

common prefix between positions i and j.

• Takes O(n) space.

• Search can be conducted in O(m + log n)-time.

pos lcp

0 12 $

1 11 0 i$

2 8 1 ippi$

3 5 1 issippi$

4 2 4 ississippi$

5 1 0 misssissippi$

6 10 0 pi$

7 9 1 ppi$

8 7 0 sippi$

9 4 2 sissippi$

10 6 1 ssippi$

11 3 3 ssissippi$



Burrows-Wheeler Transform
$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi



Burrows-Wheeler Transform

Store the last column of the rotated sorted suffix list

• Can be easily compressed because of the repetitiveness 

• When used along with the genomic sequence can quickly 

recover the original sequence  

• Ferrangina and Manzini later made advances for faster 

search
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Burrows-Wheeler Transform

Store the last column of the rotated sorted suffix list

• Can be easily compressed because of the repetitiveness 

• When used along with the genomic sequence can quickly 

recover the original sequence  

• Ferrangina and Manzini later made advances for faster 

search

What if we want to find positions with some changes?

$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi



Alignment
Given

• two sequences p and q over an alphabet Σ, and

• an alignment objective function.


Find an m x 2 matrix ( m > max(|p|,|q|) )

• where each row represents one of the sequences with inserted gap 

characters (‘-’ ∉ Σ), and

• is optimal under the objective function.

G-ATTACA
GCA-TGCT

p = GATTACA
q = GCATGCT



Alignment
Can be solved in 

• O(|p| |q|) time using Needleman–Wunsch 

algorithm1


• Extended to local alignment by Smith and 
Waterman2

With local alignment, easily find the best location 
of a small string within another even if there are 
errors.

1Needleman, Saul B. & Wunsch, Christian D. (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins". Journal of 
Molecular Biology. 48 (3): 443–53 
2Smith, Temple F. & Waterman, Michael S. (1981). "Identification of Common Molecular Subsequences" . Journal of Molecular Biology. 147: 195–197

T

source:wikicommons



Seed and Extend

Given a pattern p and a text q, find p in q
• select a substring p’ from p
• search for p’ in q using an exact search method

• only perform alignment on a small region around 

locations of p’

• Requiring multiple seeds can further reduce 

search locations and/or increase the number of 
errors allowed

Seed

p

q



Quasi-alignment

Given a pattern p and a text q, find p in q
• by first finding the set P of all overlapping 

subsequences of length k
• find the locations of p’ in P in q
• if there is a region where a large percentage 

of P are found very close call that location a 
location of p.

p

q

P}

aligns with one small difference



k-mer Counting 

For a given sequence q and value k
• determine the list of unique k-length strings in q, and

• count the frequency of each. 

• Can be used to quickly compare two sequences.

• Problems arise in keeping the hash table  

(naively Σk entries)

q = xabxyabxyabxz

k = 3

abx 3

bxy 2

bxz 1

xab 1

xya 2

yab 2

count



Minimizer schemes

Given a string q, and values k and w
• for each substring of w k-mers

• only select the minimum.

• This reduces the total number of k-mers that 

must be considered.

• Changing the ordering can impact the number 

of unique k-mers.

q = xabxyabxyabxz

k = 3

w = 2

abx 3 3

bxy 2 2

bxz 1 0

xab 1 0

xya 2 2

yab 2 0

count
minimizer 

count



Metagenomics

Given a group of sequences Q
• group q in Q so similar sequences are from 

the same (possibly unknown) organism.

• Similarity can be measured using edit 

distance (alignment), k-mer counts, etc.

1
2
5
0
0
2
1
0

2
5
0
9
0
1
0
4

7
5
3
0
0
1
0
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2
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1
8
0
1
2
2

q1 q2

q3 q4



P = abx 

Q = xabxac

    123456

pos lcp

0 12 $

1 11 0 i$

2 8 1 ippi$

3 5 1 issippi$

4 2 4 ississippi
$5 1 0 misssissip
pi$6 10 0 pi$

7 9 1 ppi$

8 7 0 sippi$

9 4 2 sissippi$

10 6 1 ssippi$

11 3 3 ssissippi$

$mississippi
i$mississipp
ippi$mississ
issippi$miss
ississippi$m
mississippi$
pi$mississip
ppi$mississi
sippi$missis
sissippi$mis
ssippi$missi
ssissippi$mi

T
p

q

P}

aligns with one small difference

q = xabxyabxyabxz

k = 3

abx 3

bxy 2

bxz 1

xab 1

xya 2

yab 2

Naive sequence search Suffix trees Suffix arrays BWT

Alignment Quasi-alignment k-mer counting 



Minimizers
Given a set of sequences, compute all of the pairwise overlaps

Slide adapted from those of Guillaume Marçais 
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Minimizers
Given a set of sequences, compute all of the pairwise overlaps

O(mn) time for each pair!
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Minimizers
Given a set of sequences, compute all of the pairwise overlaps

When sorted exact matches 
appear together and can be 

mapped easily 

O(n) k-mers per 
sequence!

Slide adapted from those of Guillaume Marçais 
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Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers

Store exactly every wth mer 

Storage and comparisons 
reduced by factor of 1/w

Slide adapted from those of Guillaume Marçais 



Minimizers

Store exactly every wth mer 

Large overlap,  
no matched k-mers

Storage and comparisons 
reduced by factor of 1/w

How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers
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Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers


For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Slide adapted from those of Guillaume Marçais 

S = 1000100101

111

110

101

100

011

010

001

000

k = 3

w = 3



Minimizers
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Minimizers
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Minimizers
How should you choose the k-mers from a string

• Small number of k-mers

• Cover the whole string

• Long overlaps should have large numbers of matched k-mers


For each window of w k-mers

• choose the smallest k-mer as the fingerprint.

Density of an order o

d(o, S, k) =
# of selected positions

|S|� k + 1

Slide adapted from those of Guillaume Marçais 
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Minimizers

Slide adapted from those of Guillaume Marçais 



Universal hitting set
A universal set Uk,w is
• a set of k-mers such that

• all string of length w+k-1 contains one k-mers from the set

• that minimizes the size of the set.

• Found using the de Brujin graph of k-mers by first selecting nodes that 

intersect all cycles (decycling)

• then additional nodes to intersect long paths.  

Slide adapted from those of Guillaume Marçais 



Universal hitting set
A universal set Uk,w is
• a set of k-mers such that

• all string of length w+k-1 contains one k-mers from the set

• that minimizes the size of the set.

• Found using the de Brujin graph of k-mers by first selecting nodes that 

intersect all cycles (decycling)

• then additional nodes to intersect long paths.


Universal set ordering

• Given a universal set Uk,w
• rank all k-mers from the set lower than any other. 

Slide adapted from those of Guillaume Marçais 



Universal hitting set

Slide adapted from those of Guillaume Marçais 



Minimizers
Density for human chromosome 19, k=7, w=11

Slide adapted from those of Guillaume Marçais 



Lempel-Ziv Complexity

Let the distance between strings be 

• compressibility of the concatenated string

• compared to them individually compressed.

• Similar strings will have a higher 

compression ratio. 

Zielezinski,

image source: Zielezinski, et al. Alignment-free sequence comparison: 
benefits, applications, and tools. Genome Biology. 2017.



Kullback-Leibler distance

Use the difference in information content 
to determine the distance between 
strings. 

image source: Zielezinski, et al. Alignment-free sequence comparison: 
benefits, applications, and tools. Genome Biology. 2017.



Metagenomics

• Normally one experiment -> one organism

• Multiple organisms makes for a harder problem

• Not knowing what possible species are there makes it harder still



Metagenomics

Given a set of sequences Q
• group similar sequences together.

• Equivalent to the classical problem of clustering.

• Distance metrics become important.



Metagenomics
Given a set of sequences, compute all of the pairwise distance

?
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Metagenomics

Once the data is clustered

• identify certain groups 

• assemble clusters

• generate phylogeny

• ….

image source: Laczny, et al. Alignment-free Visualization of Metagenomic 
Data by Nonlinear Dimension Reduction  Scientific Reports, 2014 



Metagenomics Tools
Table 1 Alignment-free sequence comparison tools available for next-generation sequencing data analysis (Continued)

https://sourceforge.net/
projects/trowel-ec/

Metagenomics Assembly-free
phylogenomics

AAF Phylogeny reconstruction directly from
unassembled raw sequence data from
whole genome sequencing projects;
provides bootstrap support to assess
uncertainty in the tree topology (k-mer
based)

Software
(Python)

[78] https://github.com/
fanhuan/AAF

kSNP v3 Reference-free SNP identification and
estimation of phylogenetic trees using
SNPs (based on k-mer analysis)

Software (C) [80, 81] https://sourceforge.net/
projects/ksnp/files/

NGS-MC Phylogeny of species based on NGS
reads using alignment-free sequence dis-
similarity measures d2* and d2

S under dif-
ferent Markov chain models (using k-
words)

R package [79, 160] http://www-rcf.usc.edu/
~fsun/Programs/NGS-MC/
NGS-MC.html

Species
identification/
taxonomic
profiling

CLARK Taxonomic classification of metagenomic
reads to known bacterial genomes using
k-mer search and LCA assignment

Software (C++) [84] http://clark.cs.ucr.edu/

FOCUS Reports organisms present in
metagenomic samples and profiles their
abundances (uses composition-based ap-
proach and non-negative least squares
for prediction)

Web service
Software
(Python)

[161] http://edwards.sdsu.edu/
FOCUS/

GSM Estimation of abundances of microbial
genomes in metagenomic samples (k-
mer based)

Software (Go) [162] https://github.com/
pdtrang/GSM

Mash Species identification using assembled or
unassembled Illumina, PacBio, and ONT
data (based on MinHash dimensionality-
reduction technique)

Software (C++) [163] https://github.com/marbl/
mash

Kraken Taxonomic assignment in metagenome
analysis by exact k-mer search; LCA
assignment of short reads based on a
comprehensive sequence database

Software (C++) [83] https://ccb.jhu.edu/
software/kraken/

LMAT Assignment of taxonomic labels to reads
by k-mers searches in precomputed
database

Software (C+
+/Python)

[82] https://sourceforge.net/
projects/lmat/

stringMLST k-mer-based tool for MLST directly from
the genome sequencing reads

Software
(Python)

[86] http://
jordan.biology.gatech.edu/
page/software/stringMLST

Taxonomer k-mer-based ultrafast metagenomics tool
for assigning taxonomy to sequencing
reads from clinical and environmental
samples

Web service [164] http://taxonomer.iobio.io/

Other d2-tools Word-based (k-tuple) comparison
(pairwise dissimilarity matrix using d2S
measure) of metatranscriptomic samples
from NGS reads

Software
(Python/R)

[56, 165] https://code.google.com/
p/d2-tools/

VirHostMatcher Prediction of hosts from metagenomic
viral sequences based on ONF using
various distance measures (e.g., d2)

Software (C++) [153] https://github.com/
jessieren/VirHostMatcher

MetaFast Statistics calculation of metagenome
sequences and the distances between
them based on assembly using de Bruijn
graphs and Bray–Curtis dissimilarity
measure

Software (Java) [166] https://github.com/ctlab/
metafast

The up-to-date list of currently available programs can be found at http://www.combio.pl/alfree/tools/. Accessed 23 August 2017
LCA lowest common ancestor, NGS next-generation sequencing, SNP single-nucleotide polymorphism, SNV single-nucleotide variant

Zielezinski et al. Genome Biology  (2017) 18:186 Page 7 of 17

image source: Zielezinski, et al. Alignment-free sequence comparison: 
benefits, applications, and tools. Genome Biology. 2017.
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Why?
Quantification is used for 
•differential expression

•disease sub-typing, and 

•cancer progression analysis



Alignment-free
Alignment is slow
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Alignment is slow
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•Storage size

-Sailfish on human = 3.1G
-Bowtie alignment = 15.5G



Alignment-free
Alignment is slow

Why else?
•Error tolerance
•Storage size

-Sailfish on human = 3.1G
-Bowtie alignment = 15.5G

•Memory usage



The Index
The index is the key it contains 
•a perfect hash of k-mers (in T) to indices

•a count of k-mer use

•maps from T to k-mers and vice versa 



Equivalence Classes
An equivelence class is 
•all k-mers

•that appear in the same set of transcripts

•with the same frequency


For k=20 and the human experiment 
•number of k-mers: 4^20 = 2^40 =                                   1,099,511,627,776

•number of k-mers in the human transcriptome =                         60,504,111 

•number of k-mers in the human read set =                                  39,393,132

•number of distinct equivalence classes =                                         151,385 
                                                                                                           (0.38%)



EM

Initial μ’

Why is li’ = l - k + 1 ?



Bias Correction
Expression prediction can be impacted by 
•fragment length

•CG content

•dinucleotide frequency


Corrections are made following 
procedures in Zeng, et al. (2011) 
•measure length, GC and DN frequency

•find PCs for GC and DN

•fit a correction function

ex
pr

es
si

on



Real Data

k-mers per kilobase,  
per million mapped k-mers



Simulation



Take Aways
What was new 
•alignment-free quantification is fast

•similar accuracy to alignment-based methods

•EM efficiently takes care of multi-mapped reads

•single input parameter


Problems 
•biases are not addressed fully



Going beyond k-mer counts
kallistoSalmon

Patro, et al. Nature Biotechnology, 2017 
Srivastava, et al. Bioinformatics, 2016 Bray, et al. Nature Biotechnology, 2016



Advanced Bias Correction
Salmon extends the BC from Sailfish 
•considers 5’- and 3’- sequencing bias

•fragment-level GC bias

•length-bias



Accuracy of new methods
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