Read Alignment

Adapted from Makinen, et al. Chapter 10

Computational Problem

Given
ea reference genome G, and
ea set of reads R = (r1,ra,13,...,1) € (27)kwhere each read r is a subsequence
of G with a small number changes
Output
*the semi-global alignment of rand G for allrie R

Computational Problem

Given
ea reference genome G, and
ea set of reads R = (r1,ra,13,...,1) € (27)kwhere each read r is a subsequence
of G with a small number changes
Output
ethe semi-global alignment of ri and G for all ri € R with <k changes

call these k-error mappings

Read Filtering

If a read is long enough, it should not align well to a random region of G
This assumes that the sequence was read correctly

Sequencing machines output a quality score for each position of a read
*this can be interpreted as a probability P(r[j]) that the character is correct
in other words with probability P(r]j]), position r[j| is a random character

This means that a given sequence will match a random sequence with probability

P =] (L (1) s+ (l_t (r[jD))

1<i<n
*where qgc Is the probability of ¢ in a random sequence

Read Filtering

We expect the number of random matches between r and a given string T
such that [T|=mtobe E(r,T) = (m —n+ 1)P(r)

We can then threshold the reads that are too low quality by this expectation

Pigeonhole Principle

Assume for now we're not dealing with insertions or deletions

The pigeonhole principle in this case says that if the read is partitioned into
k+1 pieces, one must appear in the genome exactly if the read has a k-error

mapping.

All k-error mappings will have at least one exact match, not all exact
matches lead to k-error mappings

e — L A— E——

Initial ideas to read mapping

Construct an index of G (say a succinct suffix array)
Search for each of the pieces of the read in the index

Verify each occurrence's alignment against that region of G

O(m log o + (log('+9n + m2/w) c) time

/

number of candidates

Aligning reads

We mentioned that we want the semi-global alignment of each read to the

genome, ignoring any deletions (from the genome) at the start or end of the
alignment

We can align the read along the suffix tree of the genome, where each row is
a position in the genome

parts of the alignment matrix will be shared.

Aligning reads

AGGCCTAAAGGGCCTT AGGCCTAAAGGGCCTT

OO0 P30 8

AGGCCTAAAGGGCCTT

HHEA QOO P P30 0n

Aligning reads

AGGCCTAAAGGGCCTT

AGGCCTAAAGGGCCTT

Only need to go to a depth of 2m since the best alignment
can't be worse than deleting one string and inserting the other.

We don't have the suffix tree!

Dynamic Programming using a BWT

Since we want to save the previous rows
*we can read the characters one-by-one from the sequence
*when you reach the max depth, backtack up the tree to the last branch
e overwrite the new rows with the characters read down the new branch

How do we backtrack on a BWT?

Dynamic Programming using a BWT

define Branch(d,[i...j|):
for C € I dX- enurner ateRigh t(i:./) dO compute the dynamic programming table row

Process (C d) “ using character c in row d

If d = 2m and score > threshold do
output alignment
Ifd <2m do
Branch(d+1,idx.extendRight(c, [i,j])) O(mo)-time

O(m2+mo)-space

Prefix Pruning

The full dynamic program is still slow

What if we go back to hamming distance, but still use the BWT

Prefix Pruning

define Branch(d,k,|[i...jJ]):
for c € idx.enumerateRight(,j) do

if p/d] # c do
K=k-1

If k=0 do
ifd =mdo

output locations in [i,j]

else O(mo)-time

Branch(d+1, k, idx.extendRight(c,[i,j])) O(mao)-space

Approximate Overlaps

If we're not given a reference genome, we are left to do de novo assembly.
The first step is known as overlap mapping.
Given a set of reads R = {R7,R%,...,R9} find the set of suffix-prefix overlaps

(R',Ri,01).
e Search is performed using the reverse BWT for T = R1$'R2$2R3$3... RI$$

Paired-end reads

We mentioned previously that many times reads come in pairs from the
seqguencer

These pairs can be used to determine exactly where a read maps (in the
case of reads that can be placed in multiple locations)

Mapping can be done independently (useful for large scale change
detection), but can also be performed together

e Search performed using the suffix array of the genome, which is large

Split alignment of reads

In RNA-Sequencing (RNA-Seq) the reads will have the introns removed,
meaning there will be large gaps in the mapping position on the genome

If we have a complete transcriptome (all possible spliced transcripts), we
could map reads to that, but we may not have it

There I1s no clean solution to this, possibilities include:
find all error free regions of a read, piece them together if the distances

are reasonable
e predict exon boundaries in the read, then align those contiguous regions

Bowtie

Langmead, Trapnell, Pop, Salzberg 2009

Open Access

Software
Ultrafast and memory-efficient alignment of short DNA sequences

to the human genome
Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

Address: Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742, USA.

Correspondence: Ben Langmead. Email: langmead @cs.umd.edu

Published: 4 March 2009 Received: 2|1 October 2008

Genome Biology 2009, 10:R25 (doi:|0.1 186/gb-2009-10-3-r25) i‘z‘c’::td; d|-94?4eacrirl;%rc>gooa

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2009/10/3/R25

© 2009 Langmead et al.; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

FM-Index

The "BWT Index" discussed previously is also called the "FM Index”
* Originally defined by Ferragina and Manzini in 2000/2005

Reminder that the BWT/FM-index is:
* A data structure for a sting T containing
 BW s encoded as a wavelet tree
e an integer array C continuing the counts of each character from 2 in T

Refresher on BW s

Can be constructed using the
last character of the
lexicographic order of all
cyclic rotations of the text

Encodes the original text,
which can be recovered by a
walk in the sequence

Searching for patterns is done
back to front using similar
techniques to sequence
recovery

Using a BWT to Align Reads

The BWT and FM-Index are insufficient for aligning reads since it doesn't
allow for errors

Previously mentioned some method to overcome this

Bowtie assumes all changes are single point changes (i.e. mismatches only)
* [hey use a backtracking search to find matching locations

* [he quality scores are used to prioritize alignments
* Other speed-ups are included to ensure all matching locations are found

Backtracking

Start by matching the exact sequence

If the algorithm reaches a point with no
matches swap out characters already
matched and restart search from that there

When ties occur, start with the character

with the lowest quality score, keep the rest
In a stack

Keep track of how many changes are made

"Bowtie conducts a quality-aware, greedy, randomized, depth-first search through the space of possible alignments."

Backtracking Options

The user specifies the sum of the quality scores that can be changed
*this means that a mapping can have lots of low quality replacements, or
*one medium quality change

Bowtie outputs the first valid alignment by default (within the specified constraints)
ecan be modified to complete the backtracking and return the "best" alignment
e 2X-3X slower to do this

User can specify a number of alignments to consider
edefault is to use only one
* might want the two best alignments
2 alignments is ~2x slower than using only 1

Excessive Backtracking

In low quality reads, lots of time may be spent backtracking since there are
many possible changes at low quality positions.

They mitigate this by creating two indexes (as we saw previously), one for
the forward and one for the reverse of the string

*the backtracking is performed somewhat simultaneously on both index
as we will see next

One other step they take is to concentrate on the "high-quality” end of a
read (the first 28 characters read) which is most reliable

Phased Search

lo-half hi-half
GCEq s Ca
Split the seed (first 28 bases) into two parts, hi-half and lo- - I— | —— seed —
half -0 gl 5|
| : : Mirror index
Assume we're allowing 2 changes in the seed, a good Y B
alignment will have either:
1. no mismatches Phase 2 acga.. .gccg
2. no mismatches in hi-half, 1 or 2 mismatches in lo-half —12-—0—
3. 1 or 2 mismatches in hi-half, no mismatches in lo-half Ty
: : : : : Forward inde
4.1 mismatch in hi-half, 1 mismatch in lo-half ey e v ey ey e o
gccg... ..agca
From Phase 2
>0
o Phase 3
Phase 1 uses the mirror index and invokes the aligner to find alignments for cases 1 & 2.
Phases 2 and 3 cooperate to find alignments for case 3:
Phase 2 finds partial alignments with mismatches only in the hi-half, and gccg... ..agca
phase 3 attempts to extend those partial alignments into full alignments. 50 ’ 1 —1

Finally, phase 3 invokes the aligner to find alignments for case 4.

Phased search with reverse strand

Forward read Reverse-complement read
£ | . ! L vo— L gp Lo
i —
Since both the read and its reverse ; S s v S v
complement are possibilities for ma match, s e |
need to consider both. \ o
L _o— FromPhase 2

\
Phases 2-4 here map to phases 1-3 (s e e W T s
L 2 1 1

] l 1-2 —l— 0 Bt '|.
previously.
Forward index |
Mirror inde /

| 4

Qc ;a}

<t L 0 | From Phase 3

© \
- |

& Y

Performance

Maq (Li, Ruan, Durban 2008), SOAP (Li, Li, Kristiansen, Wang 2008) the
leading competitors at the time

Both used hashing to find potential mapping locations

Performance

Platform |CPU time Wall clock Reads mapped Peak virtual memory |Bowtie Reads
time per hour (millions) footprint (megabytes) speed-up aligned (%)
Bowtie -v 2 15m7s 15md1is 33.8 1,149 67.4
Server 351x
SOAP 91Th57m35s 91h47 m46s 0.10 13,619 6/7.3
Bowtie 16m41s 17 m 57 s 29.5 1,353 71.9
PC 59.8x
MAQ 17h46m35s 17h53m7s 0.49 804 /4.7
Bowtie 17m 58 s 18mM26 s 28.8 1,353 71.9
Server 107 x

MAQ 32h56m53s 32h58m39s 0.27 804 74.7

Take Aways

Bowtie was (at the time) the fastest short read aligniner

Used a one-time index based on a BWT that could be reused (novel at the
time)

|s able to run on a standard PC

When first published didn't use mate-pair information

Bowtie2

nature > nature methods > brief communications > article a natureresearch joumal

nature methods

Brief Communication | Published: 04 March 2012

Fast gapped-read alignment with Bowtie

2 Associated Content

Download PDF

Collection

Ben Langmead &J & Steven L Salzberg 1 Biol
Computational Biology

Nature Methods 9, 357-359(2012) | Cite this article

9803 Accesses | 11624 Citations | 75 Altmetric | Metrics
Sections Figures References

Bowtie2

1. Extract seeds

»
D

L

] =
p
L
=

=

-

Aoy
=

o

3. Prioritize, esolve

4. Extend

Read
CCASTAGCTCTCAGCCTTATTTTACCCAGGCCTGETA EACAGGETGGGTAAAATAAGGCTGAGAGCTACTGS

Read (‘everse comolement)

Policy: extract 16 nt seed every 10 nt

Sccds
+, 0: CCAGTAGCTCTCAGCC -, 0: TACAGGCCTGGGTAAA
+. 10: TCAGCCTTATTTTACC .. 10: GGTAAAATAAGGCTGA
4+, 20: TTTACCCAGGCCTGTA -, 20: GGCTGAGAGCTACTGG
4 5y Seed alignments
o Ungapped (as Burrgws-Wheeler ranges)
4+, 0: CCAGTAGCYCTCAGCC alignment with

+, 10: TCAGCCTTATTTTACC
+, 20: TTTACCCAGGCCTGTA

FM Index ([211, 212], [212, 214] }
- { [653, 654], [651, 653])}

$
— » e | =w((684, 635])
-, 0: TACAGGCCTGGGTAAA . ¢ {1
-, 10: GGTAAAATAAGGCTGE | pabon
- |
-, 20: GGCTGAGAGCTACTGG b o
{ [624, 625])
Seed alignments (as BW ranges) % N Extension candidates
{ [211, 212], [212, 214] } nghi;-llef;wim
nde - - -
{ [653, 654], [651, 653] } x BW row.6§4. chr}2.1.955
([684, 685] } s : BW row:624: chrz:462
() n— » - —% BW row:211: chr4:762
—n Ontize | e e
l ool I_f__,: BW row:213: chrl2:1935
([[624, 625]) 9 : BW row:652: chrl2:1945
~
Ex:ension cancidates % = SAM alignments
SIMD dynamic
BW row:684: chrl2:1955 programming rl © chrl2 1936 G
aligner 36M % (4] (4]
BW row:624: chr2:462 ___ CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA
: . . =% IIIIIIIIIITIIIIIIIIIIIIINIIIIIIIIINI

e B e AS:1:0 XS:i:-2 XN:i:0
BN row:213: chrl2:1935 XH:i:O X0:1:0 XG:1:0
BW row:652: chrl2:1945 ?2;1;: o A

Reads aligned of 2 million (%)

S

Bowtie2

B Bowtie 2 ® BWA A SOAP2 ¢ Bowtie

100 4
< g5
§ 0 = oo
f=
:’_ 90
o
L
Q
c
& es{ .,
(T
w0
o
L‘I:J A
80
L | Y T 1_A T T T -
15 30 45 0 30 60 90 120

Time (min)

Time (min)

