De Brujin Graph,
Overlap-Layout-Consensus, &

de novo assembly
CS 4390/5390




De Brujin graphs

though we call them De Brujin graphs they were independently described by
Nicolaas Govert de Bruijn and Irving John Good in 1946

they are used to encode sequence information as paths in a graph

Definition a k-order de Brujin Graph (DBG) D = (V.E) has:
o/ = 2k -- there Is a vertex for each possible k-mer
oF ={ax =& xb |a,b € 2, x € 2k-1} -- for each (k+7)-mer axb,
there is an edge from the k-mer ax to the k-mer xb


https://en.wikipedia.org/wiki/Nicolaas_Govert_de_Bruijn

De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) D = (V,E) has:
o/ = 2k -- there Is a vertex for each possible k-mer
oF ={ax = xb |a,b € 2, x € 21} -- for each (k+7)-mer axb,
there is an edge from the k-mer ax to the k-mer xb

k=1

R
&/ i ) C' @o@@o@ (om)@l@




De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) D = (V,E) has:
o/ = 2k -- there Is a vertex for each possible k-mer
oF ={ax = xb |a,b € 2, x € 21} -- for each (k+7)-mer axb,
there is an edge from the k-mer ax to the k-mer xb

k=2

A~ 7N
SiWie

Each node has o outgoing edges,
and o incoming edges

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg



De Brujin Graphs

Definition a k-order de Brujin Graph (DBG) D = (V,E) has:
o/ = 2k -- there Is a vertex for each possible k-mer
oF ={ax = xb |a,b € 2, x € 21} -- for each (k+7)-mer axb,
there is an edge from the k-mer ax to the k-mer xb

Any string over the alphabet

Each node has o outgoing edges, can be encoded as a path on the DBG

and o incoming edges

Example:|1011000

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg



Other properties for DBGs we won't use for
assembly

the de Brujin of order k is a line graph of the debrujin graph of order k-7



Other properties for DBGs we won't use for
assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it
contains all k-mers exactly once




Other properties for DBGs we won't use for
assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it
contains all k-mers exactly once

*or the Eulerian path of the graph of k-7

0001011100

Image courtesy commons.wikimedia.org/wiki/File:Debruijngraph.gif

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg



Other properties for DBGs we won't use for
assembly

a decycling set of edges a de Brujin graph is a set of nodes that when
removed leave a DAG

*this set of k-mers is guaranteed to exist in all long enough sequences

110 100

AN — TN
Gl]\ /101 _)010\ ;09

001

Can you find a length 6 binary sequence,
which does not intersect one of the red k-mers?

Image courtesy of Guillaume Marcais

011




Other properties for DBGs we won't use for
assembly

a decycling set of edges a de Brujin graph is a set of nodes that when
removed leave a DAG

*this set of k-mers is guaranteed to exist in all long enough sequences

110

010
001

Can you find a length 6 binary sequence,
which does not intersect one of the red k-mers?

Image courtesy of Guillaume Marcais

011




DBG for DNA

What we have seen in the previous slides was the DBG for 2 = {1,0}

For DNA (2 ={A,C,T,G}) the graph is a little more complicated

TT

ZAUIR

A TG T
Y

"GT — G

Y%

GG




Sequence de Brujin Graphs

What is most commonly used in practice for genome assembly Is a subset
of the DBG based on a given sequence

This is sometimes In literature referred to as simply a de Brujin Graph

AAAGGCGTTGAGGTT
TGAG TTGA
AAAG
AAGG GAGG GTTG
AGGC
GGCG AAAG AAGG AGGT GGTT GTTT
GCGT
CGTT AGGC -~
GITG
“gﬁG GGCG GCGT
GAGG
AGGT

GGTT

Image courtesy 10.1093/bib/bbw096



Sequence de Brujin Graphs

What is most commonly used in practice for genome assembly Is a subset
of the DBG based on a given sequence

This is sometimes In literature referred to as simply a de Brujin Graph

Unknown target genome

ATGCTATGCGT
a ATGCTA (k+1)-mers
D . CTATGC =) |ATGC TGCT GCTA CTAT
» IATGCGT TATG ATGC TGCG GCGT

Y
4/ ATGC — ATG,TGC
[ (k+1)-mer k-mers
de Bruijn Graph
Eulerian path

TATG

ATGC—TGCT GCTA CTAT ?
A | | GCT - C T
N |

Image courtesy 10.1093/nar/gks678



Sequence de Brujin Graphs

Casting assembly as Eulerian walk is appealing, but not practical

Uneven coverage, sequencing errors, etc make graph non-Eulerian

Even if graph were Eulerian, repeats yield many possible walks

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn
graph, where walk contains each read as a subwalk

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly.’
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

Adapted from http://www.langmead-lab.org/teaching-materials/


http://www.langmead-lab.org/teaching-materials/

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly

[ Ovsrlap j [ Error cojrrection ]

[ Lai/out j [ de Bruij+n graph ]

[ Consensus ] [ Refine j
I___l l—l

[Scaffolding ]

|

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

[ Overlap j Build overlap graph
v

[ Layout j Coalesce paths into contigs
¥

[ Consensus j Pick nucleotide sequence for each contig

!

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps

Overlap: Suffix of X of length >/ matches prefix of Y; [ is given

Naive: look in X for occurrences of Y’s length-/ prefix. Extend matches to
the right to confirm whether entire suffix of X matches.

Extend to right; confirm a length-6

Say I=3 Eound it prefix of Y matches a suffix of X
X: CTCTAGGCC X: CTCTAGGCC X: CTCTAGGCC

—_ —>
Y- TAGGCCCTC Y: TAGGCCCTC Y: TAGG_C)CCTC

N\

Look for this in X

See suffixPrefixMatch function in HW5 Q4 (Assembly Challenge)

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps

With suffix tree?

Given a collection of strings S, for each string xin S find all
overlaps involving a prefix of x and a suffix of another string y

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps with suffix tree

Generalized suffix tree for { "GACATA” “ATAGAC"} GACATAS,ATAGACS

A /50 /C \$ N\\GAC > _TA

$o /C [TA\GACS$, ATA$ \$ | ATAS$\S | $9 \GACS |

5 < 9 2 12 0 10 4 3

ATAS (5 50 \GACS 1 | et query = GACATA (first string). From root,

| 0 . ; follow path labeled with query.
Green edge implies length-3 suffix of second
ATAGAC string equals length-3 prefix of query

GACATA

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps with suffix tree

Generalized suffix tree for { "GACATA” “ATAGAC"} GACATAS,ATAGACS

A /50 /C \$; \GAC_TA

6 13
Sy /C [TA\GACS ATAS$( \$ ATA$\S | $o \GACS$
5 9 2 12 0 10 4 8
ATASo b1 Po\GACST | ot query = ATAGAC (second string). From
1 » ; i root, follow path labeled with query.
Green edge implies length-3 suffix of first
GACATA string equals length-3 prefix of query

ATAGAC

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps with suffix tree

Generalized suffix tree for { "GACATA” “ATAGAC"} GACATAS,ATAGACS

A /%0 /C \$; \GAC > _TA

6 13
§o /C [TA\GACS ATAS$( \$ | ATA$\$ | $9 \GACS |
5 < 9 2 12 0 10 4 3
ATASo 1 20 \GACS T Strategy:
1 1 3 7 (1) Build tree

(2) For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a prefix/suffix match

involving prefix of query string and suffix of
string ending in the separator.

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps with suffix tree

o

59 /C ITA \GACS ATAS$( \$ | ATAS$ NS | $o \GACS
(W

$ 1 'b O GAC$ 1

9 2 12 0 10 4 8

| ¥ ‘ Say there are d reads of length n, total length
N =dn, and a = # read pairs that overlap

Assume for given string pair we report only the longest suffix/prefix match

®,

Time to build generalized suffix tree: O(N)
... to walk down red paths: )

S

(
(
.. to find & report overlaps (green):  O(
(

®,

Overall: N + a)

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps

What about approximate suffix/prefix X: CTCGGCCCTAGG
matches? AREEERER

Y: GGCTCTAGGCCC

Dynamic programming

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps with dynamic programming

X: CTCGGCCCTAGG

Y: GGCTCTAGGCCC

Use global alignment recurrence and score function

DZ—lv]_l]

D[i — 1, j] + s(z|i — 1], —)
D[i,j] = min ¢ D[i,j — 1] +s(—,ylj — 1

s(x|t —

s(a, b)
Alc|lGg]|T]-
Alo|4a|2]|4]s
) Cl4a|o0|4|2]S8
- , G|2|4|0]|4]8
]7y[] _ 1]) T14(2]4|0]38
88|88

How do we force it to find prefix / suffix matches?

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps with dynamic programming

s(a, b) AlC|lG]| T/ -
Alol4|2]4]8
Clalo|4]2]8
G|2[4]|0]|4]8
T|l4[2]|4]0]8
- 1818|8138

Y
- GGCTCTAGGT CTC COC

O |oo|oo |oo |oco oo |oo |oco|oo|oco|oo|oo |0
9|4 1(12|20| > 117

]X CTCGGCCCTAGG

GGCTCTAGGCCC

How to initialize first row & column
so suffix of X aligns to prefix of Y?

First column gets Os
(any suffix of X'is possible)

First row gets oos
(must be a prefix of Y)

Backtrace from last row

OO 410000000 40 1
OIOIOIOIO|IO|IO|O|®

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Finding overlaps with dynamic programming

Say there are d reads of length n, total length N =dn, and a is total
number of pairs with an overlap

# overlaps to try: O(d?)
Size of each DP matrix;: O(n2)
Overall: O(d?2n?2), or O(N2)

Contrast O(N2) with suffix tree: O(N + a), but where a is worst-case O(d2)

Real-world overlappers mix the two; index filters out vast majority of
non-overlapping pairs, dynamic programming used for remaining pairs

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

|
[ Overlap

J Build overlap graph
v

[ Layout j Coalesce paths into contigs
’

[ Consensus j Pick nucleotide sequence for each contig

!

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Layout

Overlap graph is big and messy. Contigs don't “pop out” at us.

Below: part of the overlap graph for

to every thing turn turn turn there is a season
[=4,k=7

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Layout =

Anything redundant about this part of the
overlap graph?

o_every

Some edges can be inferred (transitively) from <>
other edges

E.g. green edge can be inferred from blue

Slide countesy of BeEh Langmead: JAssembly in practice: OLC" langmead-lab.org/teaching-materials/



http://langmead-lab.org/teaching-materials/

Layout

Remove transitively inferrable edges, starting with edges that skip one

node: %

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Layout

Remove transitively inferrable edges, starting with edges that skip one

node: %

After:

<t

WA (R

=] \O

| O

E <t

= ‘ﬁ . ‘.
O

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Layout

Now remove edges that skip one or two nodes:

CATTRO RSO

After:

) ) o) ) ) ) )
o)
No)
) ) ) ) ) ®) ®) )
O \O
<
=}
N
O o) <t Ql
‘ ' =
E

Even simpler

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Layout

Emit contigs corresponding to the non-branching stretches

L -0 )

|

=l

o) o o o o) o o o o) o o) o o) =
=]

|

o0

Contig 1 Contig 2
to every thing turn turn there is a season
—

Unresolvable repeat

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Layout

Must handle subgraphs that are spurious, e.g. because of sequencing
error

Possible repeat
boundary

prune

Mismatch a

o
] T

Mismatch could be due to sequencing error or repeat. Since the path
through b ends abruptly we might conclude it’s an error and prune b.

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

[ Overlap J Build overlap graph
v

[ Layout J Bundle stretches of the overlap graph into contigs
v

[ Consensus j Pick most likely nucleotide sequence for each contig

!

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Consensus

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA | Take reads that make
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA up a contig and line
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA | themup
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

l l l l l Take consensus, i.e.

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA ..
majority vote

Complications: (a) sequencing error, (b) ploidy

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

J Build overlap graph

[ Overlap
J Coalesce paths into contigs

v
[ Layout

v
[ COHSQHSUJ Pick nucleotide sequence for each contig

OLC drawbacks

Building overlap graph is slow. We saw O(N + a) and O(N2) approaches.

Overlap graph is big; one node per read, # edges can grow
superlinearly with # reads

Sequencing datasets are ~ 100s of millions or billions of reads

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly

|

[ Overlapﬁ
v v

[ Layout 4 [ De Bruijn graph ]
’ ¥

[ Consensuﬁ

[ Refine ]

I___l l—l

[Scaffolding ]

|

|

[ Error correction ]

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Some quick terminology

DNA is sequences into short reads which are parts of the sequence, which
are assembled into contiguous unambiguous sections, or contigs, which are
not typically the full length of the original sequence.

Using paired-end reads, we can construct a scaffold which tell us how far
apart the contigs should be with some unknown sequence in the middle (of

somewhat known length).



Scaffolding: paired-end sequencing

Fragment Size Distribution
. 104 1156626 Paired-end Fragments Mapped to Chromosome 1

Example fragment length 10 ' ' ' ' ' ' '
distribution I }
al i
Fragments are not 7t .
exactly the same length, ol i
but there’s a clear peak | |
around 250 nt, very few ° ol _
< 150 ntor > 300 nt A _
5| i
(L i
DD 510 1 DID 150 200 250 360 3510 400

Fragment Size

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Scaffolding: paired-end sequencing

Say we have a collection of pairs and we assemble them as usual

Assembly yields two contigs:

Spanning pairs
Contig 1 Contig 2

..and we discover that some of the mates at one edge of contig 1 are
paired with mates in contig 2

Call these spanning pairs

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Scaffolding: paired-end sequencing

Contig 1 Contig 2

What does this tell us?

Contig 1 is close to contig 2 in the genome

In fact, we can estimate distance between contigs using what we
know about fragment length distribution

Fragment Size Distribution
w 10% 1156626 Paired-end Fragments Mapped to Chromosome 1

—_
]

The more spanning pairs we
have, the better our estimate

o —_ [ [H3) R (8] [a3] | 0 [Lu]
T T T T T T T T T

0 50 100 150 200 250 300 350 400
Fragment Size

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Scaffolding: paired-end sequencing

----------------------
--------
- em - ~

- - - oo
_-_- = ------------- ------.
-- - -em - -,
- - -
-- -

-----------------------------
~

— I 2 it
: : Red mates in opposite
Contig 1 Contig 2 orientation from blue

What does the picture look like if contigs 1 and 2 are close, but we
assembled contig 2 “backwards” (i.e. reverse complemented)

Contig 1 Contig 2 (flipped)

Pairs also tell us about contigs’ relative orientation

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Scaffolding

Scaffolding output: collection of scaffolds, where a scaffold is a collection
of contigs related to each other with high confidence using pairs

N\
\vj U M U Image credit: Mike Schatz

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/


http://langmead-lab.org/teaching-materials/

Some quick terminology

DNA is sequences into short reads which are parts of the sequence, which
are assembled into contiguous unambiguous sections, or contigs, which are

not typically the full length of the original sequence.

Using paired-end reads, we can construct a scaffold which tell us how far
apart the contigs should be with some unknown sequence in the middle (of

somewhat known length).

The N50 value of an assembly, is the size of the contig such that half of the
total size of the assembled sequences is in smaller contigs. Specifically:

ool = . |e| A
. 1<j<i J‘ — Ai<i<lk ]‘
zl§j<i CJ" Sziﬁjﬁk Cj‘

assuming the k contigs cy,cy,...,Ck are sorted.




NSO

Assuming increasing k-mer sizes are used and sequencing is perfect, this is

how large the conigs are expected to be

k=21 k=25
_____ o | —====
/
/ 1 0.8 /!
v
/
~50 % of total| %€ /
0.4
| 0.2
7/
4/
' i . . . . . , .
100 1K 10K 100K 0 100 1K 10K 100K 1M

Sequence size(bp) Sequence size(bp)

k=29
1 — 1
10.8 | / 0.8

|

!
| 0.6 / 0.6
| 0.4 0.4
10.2 / 0.2
0 100 1K 10K 100K 0

Sequence size(bp)

Sequence size cumulant



short oligonucleotide alignment program, de novo
(SOAPdenovo)

Resource

De novo assembly of human genomes with massively
parallel short read sequencing

Ruigiang Li,""** Hongmei Zhu, ' Jue Ruan,' > Wubin Qian,' Xiaodong Fang,’
Zhongbin Shi,' Yingrui Li,' Shengting Li,' Gao Shan,' Karsten Kristiansen, '
Songgang Li,' Huanming Yang,' Jian Wang,' and Jun Wang'-**

’Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China; 2Department of Biology, University of Copenhagen,
Copenhagen DK-2200, Denmark



Sequencing and error correction

The first step taken in this (and several algorithms of this type) is read-
error correction.

Correct k-mers are going to appear multiple times in the reads set ARR oo oA

e random sequencing error-containing k-mers have low frequency EONSEREN

| Fragment and paired-end sequencing
of libraries with variant insert sizes.

Build a hash table to store the frequency of all 17-mers , A :

*for each read, start from the high-frequency regions and extended = o — @ 10 Kb

both sides to infer potential erroneous sites of low-frequency (<3)

17-mers - o/x

*for each inferred erroneous site, test the impact of changing it to B }-:;E‘—? = l@f CATIINL M
the other three allele types = e YFPO graph

e accept if all overlapping k-mers had a frequency equal to or over 3

Dynamic programming was used to find the optimal solution with
minimal changes



Graph correction

Tips
eany path that is a "dead end" and less <2k in
length is removed

O/'x epresent read sequence
LOW Coverage LIﬂkS B }_-?;E':_-;’ > Sveprlap usfing ge Bcr]uijn
. . éum Gomm wmmp G graph
eany node that is only in 1 read should be removed ==
v gR;r;r?ve erroneous connections on the
Tlny Repeats (i) Clip tips (i) Remove low- (iii) Resolve (iv) Merge bubbles

coverage links tiny repeats

e if shorter than a read length, use a read to resolve e N
the repeated sequence paths ~ » _

Bubbles

e if the two paths only have one base change, or
90% identity remove the lower coverage path



Initial Contigs

Remaining repeat sections are split into

separate contigs D > e



Scaffold Construction

Reads are remapped onto the contigs

*the reads and their mate pair create a graph
connecting them

Then the graph is linearized by:
e grouping compatible transitive links

e unresolvable repeat structures are masked (i.e.
replaced with unknown characters for a specific g . e2

L] L]

length) [ ]

When possible, polish the gaps by finding read X

pairs that map to known sections on one end and
the repeat section on another



The final assemblies

Sequence N50 N90 Total Genome Gene
Data set Step depth (bp) (bp) length coverage coverage
Asian genome Contig 52X 1050 205 2,146,837,026 80.3% 93.4%
Scaffold (135&440bp PE) 26 X 17,331 3838 2,510,643,840 80.3% 93.4%
Scaffold (+2.6 kb PE) 5X 103,474 21,431 2,718,204,301 80.3% 93.4%
Scaffold (+6 kb PE) 4X 230,544 47,127 2,800,570,159 80.3% 93.4%
Scaffold (+9.6 kb PE) 2X 446,283 78,405 2,874,204,399 80.3% 93.4%
Contig after gap closure 7384 1376 2,457,434,692 87.4% 95.5%
African genome Contig 40X 886 185 2,098,284,706 79.8% 87.7%
Scaffold (200bp PE) 40X 4474 936 2,375,357,508 79.8% 87.7%
Scaffold (+2 kb PE) 4} 61,880 5994 2,696,443,788 79.8% 87.7%
Contig after gap closure 5909 1004 2,367,973,949 85.4% 89.2%

All read sequences were used in contig assembly, while paired-end
construction. N50 of contig or scaffold was calculated by ordering al
length exceeded 50% of the total length of all sequences. N90 is simi

ibraries with different insert sizes were used step-by-step additively on scaffold
sequences, then adding the lengths from longest to shortest until the summed

arly defined. NCBI build 36.1 was used as the reference genome and RefSeq was

used as the gene set to evaluate genome and gene region coverage. Since both genomes were sequenced of male individuals, chromosomes X and Y only
have half-sequencing depths of the autosomes, and hence were excluded in calculation genome and gene coverage. For calculating scaffold N50 and

total length, the intrascaffold gaps were included.



Compute time

Table 4. Statistics of computational complexity at each assembly step

Supplementary table 2. Statistics of contig size by graph simplification step by step.

Longest (bp) IN50 (bp) [N90 (bp)
425 29 25

Human African Human Asian

Peak memory No.of Time Peak memory No.of Time

Step (Gb) CPUs  (h) (Gb) CPUs  (h)
Initial de Bruijn graph

Preassembly error correction 96 40 22 96 40 24 : :

Construct de Bruijn graph 140 16 8 140 16 10 Tips clipped 3,836 29 25
S'Tgrl]'%graph and output 62 1 3 108 1 6 Low-coverage removed 3,946 32 25
Remap reads 43 8 2 74 8 4 Tiny repeats solved 15,933 54 25
Scaffolding 23 1 4 15 1 3

Gap closure 35 8 T 53 8 1 Bubbles merged 18,483 127 25
Total 140 — 40 140 — 48

Contigs (>=100bp) 18,483 1,050 205

The assemblies were performed on a supercomputer with eight Quad-core AMD 2.3 GHz CPUs with
512 Gb of memory installed, and used the Linux operating system.



