
De Brujin Graph,  
Overlap-Layout-Consensus, &

de novo assembly
CS 4390/5390

De Brujin graphs

though we call them De Brujin graphs they were independently described by
Nicolaas Govert de Bruijn and Irving John Good in 1946

they are used to encode sequence information as paths in a graph

Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

https://en.wikipedia.org/wiki/Nicolaas_Govert_de_Bruijn

De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

k=1 k=2 k=3

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

k=2
Each node has σ outgoing edges,  

and σ incoming edges

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

De Brujin Graphs
Definition a k-order de Brujin Graph (DBG) D = (V,E) has:

•V = Σk -- there is a vertex for each possible k-mer

•E = {ax → xb | a,b ∈ Σ, x ∈ Σ(k-1)} -- for each (k+1)-mer axb,

there is an edge from the k-mer ax to the k-mer xb

k=2
Each node has σ outgoing edges,  

and σ incoming edges

Any string over the alphabet  
can be encoded as a path on the DBG

Example: 1011000

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

the de Brujin of order k is a line graph of the debrujin graph of order k-1

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it
contains all k-mers exactly once

00110

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

A de Brujin sequence is an Hamiltoninan path of the graph, meaning it
contains all k-mers exactly once

•or the Eulerian path of the graph of k-1

0001011100

Image courtesy commons.wikimedia.org/wiki/File:Debruijngraph.gif

Image courtesy commons.wikimedia.org/wiki/File:DeBruijn-as-line-digraph.svg

Other properties for DBGs we won't use for
assembly

a decycling set of edges a de Brujin graph is a set of nodes that when
removed leave a DAG

•this set of k-mers is guaranteed to exist in all long enough sequences

Image courtesy of Guillaume Marçais

Can you find a length 6 binary sequence,
which does not intersect one of the red k-mers?

Other properties for DBGs we won't use for
assembly

a decycling set of edges a de Brujin graph is a set of nodes that when
removed leave a DAG

•this set of k-mers is guaranteed to exist in all long enough sequences

Can you find a length 6 binary sequence,
which does not intersect one of the red k-mers?

Image courtesy of Guillaume Marçais

DBG for DNA
What we have seen in the previous slides was the DBG for Σ = {1,0}

For DNA (Σ = {A,C,T,G}) the graph is a little more complicated

AA AC

AT

AG

CA CC

CT

CG

TA TC

TT

TG

GA GCGT

GG

Sequence de Brujin Graphs
What is most commonly used in practice for genome assembly is a subset
of the DBG based on a given sequence

This is sometimes in literature referred to as simply a de Brujin Graph

Image courtesy 10.1093/bib/bbw096

Sequence de Brujin Graphs
What is most commonly used in practice for genome assembly is a subset
of the DBG based on a given sequence

This is sometimes in literature referred to as simply a de Brujin Graph

Image courtesy 10.1093/nar/gks678

(k+1)-mers

(k+1)-mer k-mers

Sequence de Brujin Graphs
Casting assembly as Eulerian walk is appealing, but not practical

Even if graph were Eulerian, repeats yield many possible walks

Uneven coverage, sequencing errors, etc make graph non-Eulerian

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn
graph, where walk contains each read as a subwalk

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

De Bruijn graph

Adapted from http://www.langmead-lab.org/teaching-materials/

http://www.langmead-lab.org/teaching-materials/

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: De Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Sca!olding

Re"ne

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Coalesce paths into contigs

Pick nucleotide sequence for each contig

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps

Overlap: Su!x of X of length ≥l matches pre"x of Y; l is given

Naive: look in X for occurrences of Y’s length-l pre"x. Extend matches to
the right to con"rm whether entire su!x of X matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say l = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in X

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to right; con"rm a length-6
pre"x of Y matches a su!x of X

See suffixPrefixMatch function in HW5 Q4 (Assembly Challenge)

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps

With su!x tree?

Given a collection of strings S, for each string x in S "nd all
overlaps involving a pre"x of x and a su!x of another string y

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps with su!x tree
Generalized su!x tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = GACATA ("rst string). From root,
follow path labeled with query.
Green edge implies length-3 su!x of second
string equals length-3 pre"x of queryATAGAC

 |||
 GACATA

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps with su!x tree
Generalized su!x tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let query = ATAGAC (second string). From
root, follow path labeled with query.
Green edge implies length-3 su!x of "rst
string equals length-3 pre"x of queryGACATA

 |||
 ATAGAC

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps with su!x tree
Generalized su!x tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a pre"x/su!x match
involving pre"x of query string and su!x of
string ending in the separator.

Strategy:
(1) Build tree
(2)

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps with su!x tree

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Say there are d reads of length n, total length
N = dn, and a = # read pairs that overlap

Time to build generalized su!x tree: O(N)
... to walk down red paths: O(N)
... to "nd & report overlaps (green): O(a)
Overall: O(N + a)

Assume for given string pair we report only the longest su!x/pre"x match

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps

What about approximate su!x/pre"x
matches?

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

Dynamic programming

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps with dynamic programming

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

A C G T -
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
- 8 8 8 8

s(a, b)

D[i, j] = min

8
<

:

D[i� 1, j] + s(x[i� 1],�)
D[i, j � 1] + s(�, y[j � 1])
D[i� 1, j � 1] + s(x[i� 1], y[j � 1])

How do we force it to !nd pre!x / su"x matches?

Use global alignment recurrence and score function

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps with dynamic programming

- G G C T C T A G G C C C
-
C
T
C
G
G
C
C
C
T
A
G
G

X

Y

How to initialize !rst row & column
so su"x of X aligns to pre!x of Y? 0

0
0
0
0
0
0
0
0
0
0
0
0

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

First column gets 0s
(any su"x of X is possible)

First row gets ∞s
(must be a pre!x of Y)

4 12 20 28 36 44 52 60 68 76 84 92
4 8 14 20 28 36 44 52 60 68 76 84
4 8 8 16 20 28 36 44 52 60 68 76
0 4 12 12 20 24 30 36 44 52 60 68
0 0 8 16 16 24 26 30 36 44 52 60
4 4 0 8 16 18 26 30 34 36 44 52
4 8 4 2 8 16 22 30 34 34 36 44
4 8 8 6 2 10 18 26 34 34 34 36
4 8 10 8 8 2 10 18 26 34 36 36
2 6 12 14 12 10 2 10 18 26 34 40
0 2 10 16 18 16 10 0 10 18 26 34
0 0 6 14 20 22 18 10 2 10 18 26

CTCGGCCCTAGG
 ||| |||||
 GGCTCTAGGCCC

X:

Y:

Backtrace from last row

A C G T -
A 0 4 2 4 8
C 4 0 4 2 8
G 2 4 0 4 8
T 4 2 4 0 8
- 8 8 8 8

s(a, b)

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Finding overlaps with dynamic programming

overlaps to try: O(d2)

Size of each DP matrix: O(n2)

Overall: O(d2n2), or O(N2)

Say there are d reads of length n, total length N = dn, and a is total
number of pairs with an overlap

Contrast O(N2) with su!x tree: O(N + a), but where a is worst-case O(d2)

Real-world overlappers mix the two; index "lters out vast majority of
non-overlapping pairs, dynamic programming used for remaining pairs

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Coalesce paths into contigs

Pick nucleotide sequence for each contig

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Layout

Overlap graph is big and messy. Contigs don’t “pop out” at us.

Below: part of the overlap graph for
to_every_thing_turn_turn_turn_there_is_a_season

l = 4, k = 7

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

ry_thin

thing_t

4

thing

5y_thing

6

urn_tur

rn_turn

6

_turn_t

4

n_turn_

5

a_seaso

_season

6

5

6

turn_tu

4

turn_th

4

here_is

e_is_a_

4

ere_is_

6

re_is_a

5

ing_tur

5hing_tu

6

ng_turn

4

urn_the

there

4

n_there

5rn_ther

6

5

4

there_i

6

very_th

5ery_thi

6

4

every

5

4

every_t

6

6

4

5

is_a_se

5

s_a_sea

4

_is_a_s

6

6

4

5

4

6

5

5

4

5

4

66

4

6

5

o_every

4

6

5

4

6

g_turn_

5

5

6

4

4

_a_seas

5

6

5

6

4

6

5

4

4

4

6

55

6

5

4

6

5

5

44

6

to_ever

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

5

6

4

6

4

5

4

4

6

55

Layout

Anything redundant about this part of the
overlap graph?

Some edges can be inferred (transitively) from
other edges

E.g. green edge can be inferred from blue

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Layout

Remove transitively inferrable edges, starting with edges that skip one
node:

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

Before:

x

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Layout
ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6 ur
n_
th
e

rn
_t
he
r6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

in
g_
tu
r

4

e_
is_
a_

_i
s_
a_
s

6

6

4

4

6

_t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h6

n_
th
er
e

4

6

o_
ev
er
y 4

6

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

4 4

6

6

g_
tu
rn
_

4

_a
_s
ea
s

6

6

to
_e
ve
r

6

6

6

4

4

6

4

6

6

44

4

6

After:

x
Remove transitively inferrable edges, starting with edges that skip one
node:

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Layout

ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6

x x

Even simpler

After:

Now remove edges that skip one or two nodes:

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Layout

Emit contigs corresponding to the non-branching stretches

ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6

to_every_thing_turn_ turn_there_is_a_season
Contig 1 Contig 2

Unresolvable repeat

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Layout

Must handle subgraphs that are spurious, e.g. because of sequencing
error

Possible repeat
boundary

Mismatcha
b

Mismatch could be due to sequencing error or repeat. Since the path
through b ends abruptly we might conclude it’s an error and prune b.

...

a

bprune

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Consensus

Take reads that make
up a contig and line
them up

Complications: (a) sequencing error, (b) ploidy

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
Take consensus, i.e.
majority vote

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Overlap Layout Consensus

Overlap

Layout

Consensus

OLC drawbacks

Building overlap graph is slow. We saw O(N + a) and O(N2) approaches.

Sequencing datasets are ~ 100s of millions or billions of reads

Overlap graph is big; one node per read, # edges can grow
superlinearly with # reads

Build overlap graph

Coalesce paths into contigs

Pick nucleotide sequence for each contig

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: De Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

De Bruijn graph

Sca!olding

Re"ne

Slide courtesy of Ben Langmead: "Assembly in practice: OLC" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Some quick terminology
DNA is sequences into short reads which are parts of the sequence, which
are assembled into contiguous unambiguous sections, or contigs, which are
not typically the full length of the original sequence.

Using paired-end reads, we can construct a scaffold which tell us how far
apart the contigs should be with some unknown sequence in the middle (of
somewhat known length).

Sca!olding: paired-end sequencing

Fragments are not
exactly the same length,
but there’s a clear peak
around 250 nt, very few
< 150 nt or > 300 nt

Example fragment length
distribution

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Sca!olding: paired-end sequencing

Say we have a collection of pairs and we assemble them as usual

Assembly yields two contigs:

Contig 1 Contig 2

...and we discover that some of the mates at one edge of contig 1 are
paired with mates in contig 2

Call these spanning pairs

Spanning pairs

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Sca!olding: paired-end sequencing

What does this tell us?

Contig 1 Contig 2

Contig 1 is close to contig 2 in the genome

In fact, we can estimate distance between contigs using what we
know about fragment length distribution

The more spanning pairs we
have, the better our estimate

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Sca!olding: paired-end sequencing

What does the picture look like if contigs 1 and 2 are close, but we
assembled contig 2 “backwards” (i.e. reverse complemented)

Contig 1 Contig 2

?

Contig 1 Contig 2 ("ipped)

Pairs also tell us about contigs’ relative orientation

Red mates in opposite
orientation from blue

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Scaffolding
•  Initial contigs (aka unipaths, unitigs) terminate at
–  Coverage gaps: especially extreme GC regions
–  Conflicts: sequencing errors, repeat boundaries

•  Iteratively resolve longest, ‘most unique’ contigs
–  Both overlap graph and de Bruijn assemblers initially collapse

repeats into single copies
–  Uniqueness measured by a statistical test on coverage

Image credit: Mike Schatz

Sca!olding

Sca!olding output: collection of sca!olds, where a sca!old is a collection
of contigs related to each other with high con"dence using pairs

Slide courtesy of Ben Langmead: "Assembly in practice: scaffolding" langmead-lab.org/teaching-materials/

http://langmead-lab.org/teaching-materials/

Some quick terminology
DNA is sequences into short reads which are parts of the sequence, which
are assembled into contiguous unambiguous sections, or contigs, which are
not typically the full length of the original sequence.

Using paired-end reads, we can construct a scaffold which tell us how far
apart the contigs should be with some unknown sequence in the middle (of
somewhat known length).

The N50 value of an assembly, is the size of the contig such that half of the
total size of the assembled sequences is in smaller contigs. Specifically:

assuming the k contigs c1,c2,...,ck are sorted.

N50 =: ci
∑1≤ j≤i cj ≥ ∑i<j≤k cj ∧

∑1≤ j<i cj ≤ ∑i≤ j≤k cj

N50
Assuming increasing k-mer sizes are used and sequencing is perfect, this is
how large the conigs are expected to be

k=21 k=25 k=29

~50 % of total

short oligonucleotide alignment program, de novo
(SOAPdenovo)

Sequencing and error correction
The first step taken in this (and several algorithms of this type) is read-
error correction.

Correct k-mers are going to appear multiple times in the reads set

•random sequencing error-containing k-mers have low frequency

Build a hash table to store the frequency of all 17-mers

•for each read, start from the high-frequency regions and extended
both sides to infer potential erroneous sites of low-frequency (<3)
17-mers

•for each inferred erroneous site, test the impact of changing it to
the other three allele types

•accept if all overlapping k-mers had a frequency equal to or over 3

Dynamic programming was used to find the optimal solution with
minimal changes

Graph correction
Tips

•any path that is a "dead end" and less <2k in
length is removed

Low Coverage Links

•any node that is only in 1 read should be removed

Tiny Repeats

• if shorter than a read length, use a read to resolve
the repeated sequence paths

Bubbles

• if the two paths only have one base change, or
90% identity remove the lower coverage path

Initial Contigs

Remaining repeat sections are split into
separate contigs

Scaffold Construction
Reads are remapped onto the contigs

•the reads and their mate pair create a graph
connecting them

Then the graph is linearized by:

•grouping compatible transitive links

•unresolvable repeat structures are masked (i.e.
replaced with unknown characters for a specific
length)

When possible, polish the gaps by finding read
pairs that map to known sections on one end and
the repeat section on another

The final assemblies

Compute time

Step Longest (bp) N50 (bp) N90 (bp)
Initial de Bruijn graph 425 29 25
Tips clipped 3,836 29 25
Low-coverage removed 3,946 32 25
Tiny repeats solved 15,933 54 25
Bubbles merged 18,483 127 25
Contigs (>=100bp) 18,483 1,050 205

Supplementary table 2. Statistics of contig size by graph simplification step by step.

